镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-07 06:56:48 +00:00
up
这个提交包含在:
@@ -1,6 +1,7 @@
|
||||
import os.path
|
||||
|
||||
from toolbox import CatchException, update_ui
|
||||
from crazy_functions.rag_essay_fns.paper_processing import ArxivPaperProcessor
|
||||
from crazy_functions.rag_essay_fns.rag_handler import RagHandler
|
||||
import asyncio
|
||||
|
||||
@CatchException
|
||||
@@ -9,7 +10,24 @@ def Rag论文对话(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
txt: 用户输入,通常是arxiv论文链接
|
||||
功能:RAG论文总结和对话
|
||||
"""
|
||||
# 初始化处理器
|
||||
if_project, if_arxiv = False, False
|
||||
if os.path.exists(txt):
|
||||
from crazy_functions.rag_essay_fns.document_splitter import SmartDocumentSplitter
|
||||
splitter = SmartDocumentSplitter(
|
||||
char_range=(1000, 1200),
|
||||
max_workers=32 # 可选,默认会根据CPU核心数自动设置
|
||||
)
|
||||
if_project = True
|
||||
else:
|
||||
from crazy_functions.rag_essay_fns.arxiv_splitter import SmartArxivSplitter
|
||||
splitter = SmartArxivSplitter(
|
||||
char_range=(1000, 1200),
|
||||
root_dir="gpt_log/arxiv_cache"
|
||||
)
|
||||
if_arxiv = True
|
||||
for fragment in splitter.process(txt):
|
||||
pass
|
||||
# 初始化处理器
|
||||
processor = ArxivPaperProcessor()
|
||||
rag_handler = RagHandler()
|
||||
|
||||
|
||||
@@ -152,8 +152,6 @@ class Conversation_To_File_Wrap(GptAcademicPluginTemplate):
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def hide_cwd(str):
|
||||
import os
|
||||
current_path = os.getcwd()
|
||||
|
||||
@@ -20,9 +20,7 @@ class ArxivFragment:
|
||||
segment_type: str
|
||||
title: str
|
||||
abstract: str
|
||||
section: str # 保存完整的section层级路径,如 "Introduction" 或 "Methods-Data Processing"
|
||||
section_type: str # 新增:标识片段类型,如 "abstract", "section", "subsection" 等
|
||||
section_level: int # 新增:section的层级深度,abstract为0,main section为1,subsection为2,等等
|
||||
section: str
|
||||
is_appendix: bool
|
||||
|
||||
|
||||
@@ -116,6 +114,100 @@ class SmartArxivSplitter:
|
||||
|
||||
return result
|
||||
|
||||
def _smart_split(self, content: str) -> List[Tuple[str, str, bool]]:
|
||||
"""智能分割TEX内容,确保在字符范围内并保持语义完整性"""
|
||||
content = self._preprocess_content(content)
|
||||
segments = []
|
||||
current_buffer = []
|
||||
current_length = 0
|
||||
current_section = "Unknown Section"
|
||||
is_appendix = False
|
||||
|
||||
# 保护特殊环境
|
||||
protected_blocks = {}
|
||||
content = self._protect_special_environments(content, protected_blocks)
|
||||
|
||||
# 按段落分割
|
||||
paragraphs = re.split(r'\n\s*\n', content)
|
||||
|
||||
for para in paragraphs:
|
||||
para = para.strip()
|
||||
if not para:
|
||||
continue
|
||||
|
||||
# 恢复特殊环境
|
||||
para = self._restore_special_environments(para, protected_blocks)
|
||||
|
||||
# 更新章节信息
|
||||
section_info = self._get_section_info(para, content)
|
||||
if section_info:
|
||||
current_section, is_appendix = section_info
|
||||
|
||||
# 判断是否是特殊环境
|
||||
if self._is_special_environment(para):
|
||||
# 处理当前缓冲区
|
||||
if current_buffer:
|
||||
segments.append((
|
||||
'\n'.join(current_buffer),
|
||||
current_section,
|
||||
is_appendix
|
||||
))
|
||||
current_buffer = []
|
||||
current_length = 0
|
||||
|
||||
# 添加特殊环境作为独立片段
|
||||
segments.append((para, current_section, is_appendix))
|
||||
continue
|
||||
|
||||
# 处理普通段落
|
||||
sentences = self._split_into_sentences(para)
|
||||
for sentence in sentences:
|
||||
sentence = sentence.strip()
|
||||
if not sentence:
|
||||
continue
|
||||
|
||||
sent_length = len(sentence)
|
||||
new_length = current_length + sent_length + (1 if current_buffer else 0)
|
||||
|
||||
if new_length <= self.max_chars:
|
||||
current_buffer.append(sentence)
|
||||
current_length = new_length
|
||||
else:
|
||||
# 如果当前缓冲区达到最小长度要求
|
||||
if current_length >= self.min_chars:
|
||||
segments.append((
|
||||
'\n'.join(current_buffer),
|
||||
current_section,
|
||||
is_appendix
|
||||
))
|
||||
current_buffer = [sentence]
|
||||
current_length = sent_length
|
||||
else:
|
||||
# 尝试将过长的句子分割
|
||||
split_sentences = self._split_long_sentence(sentence)
|
||||
for split_sent in split_sentences:
|
||||
if current_length + len(split_sent) <= self.max_chars:
|
||||
current_buffer.append(split_sent)
|
||||
current_length += len(split_sent) + 1
|
||||
else:
|
||||
segments.append((
|
||||
'\n'.join(current_buffer),
|
||||
current_section,
|
||||
is_appendix
|
||||
))
|
||||
current_buffer = [split_sent]
|
||||
current_length = len(split_sent)
|
||||
|
||||
# 处理剩余的缓冲区
|
||||
if current_buffer:
|
||||
segments.append((
|
||||
'\n'.join(current_buffer),
|
||||
current_section,
|
||||
is_appendix
|
||||
))
|
||||
|
||||
return segments
|
||||
|
||||
def _split_into_sentences(self, text: str) -> List[str]:
|
||||
"""将文本分割成句子"""
|
||||
return re.split(r'(?<=[.!?。!?])\s+', text)
|
||||
@@ -194,7 +286,7 @@ class SmartArxivSplitter:
|
||||
content = re.sub(r'\\(label|ref|cite)\{[^}]*\}', '', content)
|
||||
return content.strip()
|
||||
|
||||
def process_paper(self, arxiv_id_or_url: str) -> Generator[ArxivFragment, None, None]:
|
||||
def process(self, arxiv_id_or_url: str) -> Generator[ArxivFragment, None, None]:
|
||||
"""处理单篇arxiv论文"""
|
||||
try:
|
||||
arxiv_id = self._normalize_arxiv_id(arxiv_id_or_url)
|
||||
@@ -318,31 +410,16 @@ class SmartArxivSplitter:
|
||||
|
||||
return title.strip(), abstract.strip()
|
||||
|
||||
def _get_section_info(self, para: str, content: str) -> Optional[Tuple[str, str, int, bool]]:
|
||||
"""获取段落所属的章节信息,返回(section_path, section_type, level, is_appendix)"""
|
||||
current_path = []
|
||||
section_type = "content"
|
||||
level = 0
|
||||
def _get_section_info(self, para: str, content: str) -> Optional[Tuple[str, bool]]:
|
||||
"""获取段落所属的章节信息"""
|
||||
section = "Unknown Section"
|
||||
is_appendix = False
|
||||
|
||||
# 定义section层级的正则模式
|
||||
section_patterns = {
|
||||
r'\\chapter\{([^}]+)\}': 1,
|
||||
r'\\section\{([^}]+)\}': 1,
|
||||
r'\\subsection\{([^}]+)\}': 2,
|
||||
r'\\subsubsection\{([^}]+)\}': 3
|
||||
}
|
||||
|
||||
# 查找所有章节标记
|
||||
all_sections = []
|
||||
for pattern, sec_level in section_patterns.items():
|
||||
for pattern in self.section_patterns:
|
||||
for match in re.finditer(pattern, content):
|
||||
all_sections.append((match.start(), match.group(1), sec_level))
|
||||
|
||||
# 检查是否是摘要
|
||||
abstract_match = re.search(r'\\begin{abstract}.*?' + re.escape(para), content, re.DOTALL)
|
||||
if abstract_match:
|
||||
return "Abstract", "abstract", 0, False
|
||||
all_sections.append((match.start(), match.group(2)))
|
||||
|
||||
# 查找appendix标记
|
||||
appendix_pos = content.find(r'\appendix')
|
||||
@@ -350,118 +427,19 @@ class SmartArxivSplitter:
|
||||
# 确定当前章节
|
||||
para_pos = content.find(para)
|
||||
if para_pos >= 0:
|
||||
is_appendix = appendix_pos >= 0 and para_pos > appendix_pos
|
||||
current_sections = []
|
||||
current_level = 0
|
||||
|
||||
# 按位置排序所有section标记
|
||||
for sec_pos, sec_title, sec_level in sorted(all_sections):
|
||||
current_section = None
|
||||
for sec_pos, sec_title in sorted(all_sections):
|
||||
if sec_pos > para_pos:
|
||||
break
|
||||
# 如果遇到更高层级的section,清除所有更低层级的section
|
||||
if sec_level <= current_level:
|
||||
current_sections = [s for s in current_sections if s[1] < sec_level]
|
||||
current_sections.append((sec_title, sec_level))
|
||||
current_level = sec_level
|
||||
current_section = sec_title
|
||||
|
||||
# 构建section路径
|
||||
if current_sections:
|
||||
current_path = [s[0] for s in sorted(current_sections, key=lambda x: x[1])]
|
||||
section_path = "-".join(current_path)
|
||||
level = max(s[1] for s in current_sections)
|
||||
section_type = "section" if level == 1 else "subsection"
|
||||
return section_path, section_type, level, is_appendix
|
||||
if current_section:
|
||||
section = current_section
|
||||
is_appendix = appendix_pos >= 0 and para_pos > appendix_pos
|
||||
|
||||
return "Unknown Section", "content", 0, is_appendix
|
||||
return section, is_appendix
|
||||
|
||||
def _smart_split(self, content: str) -> List[Tuple[str, str, str, int, bool]]:
|
||||
"""智能分割TEX内容,确保在字符范围内并保持语义完整性"""
|
||||
content = self._preprocess_content(content)
|
||||
segments = []
|
||||
current_buffer = []
|
||||
current_length = 0
|
||||
current_section_info = ("Unknown Section", "content", 0, False)
|
||||
|
||||
# 保护特殊环境
|
||||
protected_blocks = {}
|
||||
content = self._protect_special_environments(content, protected_blocks)
|
||||
|
||||
# 按段落分割
|
||||
paragraphs = re.split(r'\n\s*\n', content)
|
||||
|
||||
for para in paragraphs:
|
||||
para = para.strip()
|
||||
if not para:
|
||||
continue
|
||||
|
||||
# 恢复特殊环境
|
||||
para = self._restore_special_environments(para, protected_blocks)
|
||||
|
||||
# 更新章节信息
|
||||
section_info = self._get_section_info(para, content)
|
||||
if section_info:
|
||||
current_section_info = section_info
|
||||
|
||||
# 判断是否是特殊环境
|
||||
if self._is_special_environment(para):
|
||||
# 处理当前缓冲区
|
||||
if current_buffer:
|
||||
segments.append((
|
||||
'\n'.join(current_buffer),
|
||||
*current_section_info
|
||||
))
|
||||
current_buffer = []
|
||||
current_length = 0
|
||||
|
||||
# 添加特殊环境作为独立片段
|
||||
segments.append((para, *current_section_info))
|
||||
continue
|
||||
|
||||
# 处理普通段落
|
||||
sentences = self._split_into_sentences(para)
|
||||
for sentence in sentences:
|
||||
sentence = sentence.strip()
|
||||
if not sentence:
|
||||
continue
|
||||
|
||||
sent_length = len(sentence)
|
||||
new_length = current_length + sent_length + (1 if current_buffer else 0)
|
||||
|
||||
if new_length <= self.max_chars:
|
||||
current_buffer.append(sentence)
|
||||
current_length = new_length
|
||||
else:
|
||||
# 如果当前缓冲区达到最小长度要求
|
||||
if current_length >= self.min_chars:
|
||||
segments.append((
|
||||
'\n'.join(current_buffer),
|
||||
*current_section_info
|
||||
))
|
||||
current_buffer = [sentence]
|
||||
current_length = sent_length
|
||||
else:
|
||||
# 尝试将过长的句子分割
|
||||
split_sentences = self._split_long_sentence(sentence)
|
||||
for split_sent in split_sentences:
|
||||
if current_length + len(split_sent) <= self.max_chars:
|
||||
current_buffer.append(split_sent)
|
||||
current_length += len(split_sent) + 1
|
||||
else:
|
||||
segments.append((
|
||||
'\n'.join(current_buffer),
|
||||
*current_section_info
|
||||
))
|
||||
current_buffer = [split_sent]
|
||||
current_length = len(split_sent)
|
||||
|
||||
# 处理剩余的缓冲区
|
||||
if current_buffer:
|
||||
segments.append((
|
||||
'\n'.join(current_buffer),
|
||||
*current_section_info
|
||||
))
|
||||
|
||||
return segments
|
||||
return None
|
||||
|
||||
def _process_single_tex(self, file_path: str) -> List[ArxivFragment]:
|
||||
"""处理单个TEX文件"""
|
||||
@@ -481,12 +459,12 @@ class SmartArxivSplitter:
|
||||
segments = self._smart_split(content)
|
||||
fragments = []
|
||||
|
||||
for i, (segment_content, section_path, section_type, level, is_appendix) in enumerate(segments):
|
||||
for i, (segment_content, section, is_appendix) in enumerate(segments):
|
||||
if segment_content.strip():
|
||||
segment_type = 'text'
|
||||
for env_type, patterns in self.special_envs.items():
|
||||
if any(re.search(pattern, segment_content, re.DOTALL)
|
||||
for pattern in patterns):
|
||||
for pattern in patterns):
|
||||
segment_type = env_type
|
||||
break
|
||||
|
||||
@@ -499,9 +477,7 @@ class SmartArxivSplitter:
|
||||
segment_type=segment_type,
|
||||
title=title,
|
||||
abstract=abstract,
|
||||
section=section_path,
|
||||
section_type=section_type,
|
||||
section_level=level,
|
||||
section=section,
|
||||
is_appendix=is_appendix
|
||||
))
|
||||
|
||||
@@ -511,7 +487,6 @@ class SmartArxivSplitter:
|
||||
logging.error(f"Error processing file {file_path}: {e}")
|
||||
return []
|
||||
|
||||
|
||||
def main():
|
||||
"""使用示例"""
|
||||
# 创建分割器实例
|
||||
@@ -521,10 +496,11 @@ def main():
|
||||
)
|
||||
|
||||
# 处理论文
|
||||
for fragment in splitter.process_paper("2411.03663"):
|
||||
for fragment in splitter.process("2411.03663"):
|
||||
print(f"Segment {fragment.segment_index + 1}/{fragment.total_segments}")
|
||||
print(f"Length: {len(fragment.content)}")
|
||||
print(f"Section: {fragment.section}")
|
||||
print(f"Title: {fragment.file_path}")
|
||||
|
||||
print(fragment.content)
|
||||
print("-" * 80)
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
from typing import Tuple, Optional, Generator, List
|
||||
from toolbox import update_ui, update_ui_lastest_msg, get_conf
|
||||
import os, tarfile, requests, time, re
|
||||
|
||||
class ArxivPaperProcessor:
|
||||
"""Arxiv论文处理器类"""
|
||||
|
||||
|
||||
@@ -81,5 +81,84 @@ class RagHandler:
|
||||
)
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
return f"查询出错: {str(e)}"
|
||||
|
||||
|
||||
class RagHandler:
|
||||
def __init__(self):
|
||||
# 初始化工作目录
|
||||
self.working_dir = os.path.join(get_conf('ARXIV_CACHE_DIR'), 'rag_cache')
|
||||
if not os.path.exists(self.working_dir):
|
||||
os.makedirs(self.working_dir)
|
||||
|
||||
# 初始化 LightRAG
|
||||
self.rag = LightRAG(
|
||||
working_dir=self.working_dir,
|
||||
llm_model_func=self._llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1536, # OpenAI embedding 维度
|
||||
max_token_size=8192,
|
||||
func=self._embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
async def _llm_model_func(self, prompt: str, system_prompt: str = None,
|
||||
history_messages: List = None, **kwargs) -> str:
|
||||
"""LLM 模型函数"""
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
if history_messages:
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
response = await openai.ChatCompletion.acreate(
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
temperature=kwargs.get("temperature", 0),
|
||||
max_tokens=kwargs.get("max_tokens", 1000)
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
async def _embedding_func(self, texts: List[str]) -> np.ndarray:
|
||||
"""Embedding 函数"""
|
||||
response = await openai.Embedding.acreate(
|
||||
model="text-embedding-ada-002",
|
||||
input=texts
|
||||
)
|
||||
embeddings = [item["embedding"] for item in response["data"]]
|
||||
return np.array(embeddings)
|
||||
|
||||
def process_paper_content(self, paper_content: Dict) -> None:
|
||||
"""处理论文内容,构建知识图谱"""
|
||||
# 处理标题和摘要
|
||||
content_list = []
|
||||
if paper_content['title']:
|
||||
content_list.append(f"Title: {paper_content['title']}")
|
||||
if paper_content['abstract']:
|
||||
content_list.append(f"Abstract: {paper_content['abstract']}")
|
||||
|
||||
# 添加分段内容
|
||||
content_list.extend(paper_content['segments'])
|
||||
|
||||
# 插入到 RAG 系统
|
||||
self.rag.insert(content_list)
|
||||
|
||||
def query(self, question: str, mode: str = "hybrid") -> str:
|
||||
"""查询论文内容
|
||||
mode: 查询模式,可选 naive/local/global/hybrid
|
||||
"""
|
||||
try:
|
||||
response = self.rag.query(
|
||||
question,
|
||||
param=QueryParam(
|
||||
mode=mode,
|
||||
top_k=5, # 返回相关度最高的5个结果
|
||||
max_token_for_text_unit=2048, # 每个文本单元的最大token数
|
||||
response_type="detailed" # 返回详细回答
|
||||
)
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
return f"查询出错: {str(e)}"
|
||||
@@ -1,10 +1,10 @@
|
||||
import atexit
|
||||
from loguru import logger
|
||||
from typing import List
|
||||
from typing import List, Dict, Optional, Any, Tuple
|
||||
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.ingestion import run_transformations
|
||||
from llama_index.core.schema import TextNode
|
||||
from llama_index.core.schema import TextNode, NodeWithScore
|
||||
from loguru import logger
|
||||
|
||||
from crazy_functions.rag_fns.vector_store_index import GptacVectorStoreIndex
|
||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
||||
@@ -135,4 +135,170 @@ class LlamaIndexRagWorker(SaveLoad):
|
||||
"""
|
||||
Purges the current vector store and creates a new one.
|
||||
"""
|
||||
self.purge()
|
||||
self.purge()
|
||||
|
||||
|
||||
|
||||
"""
|
||||
以下是添加的新方法,原有方法保持不变
|
||||
"""
|
||||
|
||||
def add_text_with_metadata(self, text: str, metadata: dict) -> str:
|
||||
"""
|
||||
添加带元数据的文本到向量存储
|
||||
|
||||
Args:
|
||||
text: 文本内容
|
||||
metadata: 元数据字典
|
||||
|
||||
Returns:
|
||||
添加的节点ID
|
||||
"""
|
||||
node = TextNode(text=text, metadata=metadata)
|
||||
nodes = run_transformations(
|
||||
[node],
|
||||
self.vs_index._transformations,
|
||||
show_progress=True
|
||||
)
|
||||
self.vs_index.insert_nodes(nodes)
|
||||
return nodes[0].node_id if nodes else None
|
||||
|
||||
def batch_add_texts_with_metadata(self, texts: List[Tuple[str, dict]]) -> List[str]:
|
||||
"""
|
||||
批量添加带元数据的文本
|
||||
|
||||
Args:
|
||||
texts: (text, metadata)元组列表
|
||||
|
||||
Returns:
|
||||
添加的节点ID列表
|
||||
"""
|
||||
nodes = [TextNode(text=t, metadata=m) for t, m in texts]
|
||||
transformed_nodes = run_transformations(
|
||||
nodes,
|
||||
self.vs_index._transformations,
|
||||
show_progress=True
|
||||
)
|
||||
if transformed_nodes:
|
||||
self.vs_index.insert_nodes(transformed_nodes)
|
||||
return [node.node_id for node in transformed_nodes]
|
||||
return []
|
||||
|
||||
def get_node_metadata(self, node_id: str) -> Optional[dict]:
|
||||
"""
|
||||
获取节点的元数据
|
||||
|
||||
Args:
|
||||
node_id: 节点ID
|
||||
|
||||
Returns:
|
||||
节点的元数据字典
|
||||
"""
|
||||
node = self.vs_index.storage_context.docstore.docs.get(node_id)
|
||||
return node.metadata if node else None
|
||||
|
||||
def update_node_metadata(self, node_id: str, metadata: dict, merge: bool = True) -> bool:
|
||||
"""
|
||||
更新节点的元数据
|
||||
|
||||
Args:
|
||||
node_id: 节点ID
|
||||
metadata: 新的元数据
|
||||
merge: 是否与现有元数据合并
|
||||
|
||||
Returns:
|
||||
是否更新成功
|
||||
"""
|
||||
docstore = self.vs_index.storage_context.docstore
|
||||
if node_id in docstore.docs:
|
||||
node = docstore.docs[node_id]
|
||||
if merge:
|
||||
node.metadata.update(metadata)
|
||||
else:
|
||||
node.metadata = metadata
|
||||
return True
|
||||
return False
|
||||
|
||||
def filter_nodes_by_metadata(self, filters: Dict[str, Any]) -> List[TextNode]:
|
||||
"""
|
||||
按元数据过滤节点
|
||||
|
||||
Args:
|
||||
filters: 元数据过滤条件
|
||||
|
||||
Returns:
|
||||
符合条件的节点列表
|
||||
"""
|
||||
docstore = self.vs_index.storage_context.docstore
|
||||
results = []
|
||||
for node in docstore.docs.values():
|
||||
if all(node.metadata.get(k) == v for k, v in filters.items()):
|
||||
results.append(node)
|
||||
return results
|
||||
|
||||
def retrieve_with_metadata_filter(
|
||||
self,
|
||||
query: str,
|
||||
metadata_filters: Dict[str, Any],
|
||||
top_k: int = 5
|
||||
) -> List[NodeWithScore]:
|
||||
"""
|
||||
结合元数据过滤的检索
|
||||
|
||||
Args:
|
||||
query: 查询文本
|
||||
metadata_filters: 元数据过滤条件
|
||||
top_k: 返回结果数量
|
||||
|
||||
Returns:
|
||||
检索结果节点列表
|
||||
"""
|
||||
retriever = self.vs_index.as_retriever(similarity_top_k=top_k)
|
||||
nodes = retriever.retrieve(query)
|
||||
|
||||
# 应用元数据过滤
|
||||
filtered_nodes = []
|
||||
for node in nodes:
|
||||
if all(node.metadata.get(k) == v for k, v in metadata_filters.items()):
|
||||
filtered_nodes.append(node)
|
||||
|
||||
return filtered_nodes
|
||||
|
||||
def get_node_stats(self, node_id: str) -> dict:
|
||||
"""
|
||||
获取单个节点的统计信息
|
||||
|
||||
Args:
|
||||
node_id: 节点ID
|
||||
|
||||
Returns:
|
||||
节点统计信息字典
|
||||
"""
|
||||
node = self.vs_index.storage_context.docstore.docs.get(node_id)
|
||||
if not node:
|
||||
return {}
|
||||
|
||||
return {
|
||||
"text_length": len(node.text),
|
||||
"token_count": len(node.text.split()),
|
||||
"has_embedding": node.embedding is not None,
|
||||
"metadata_keys": list(node.metadata.keys()),
|
||||
}
|
||||
|
||||
def get_nodes_by_content_pattern(self, pattern: str) -> List[TextNode]:
|
||||
"""
|
||||
按内容模式查找节点
|
||||
|
||||
Args:
|
||||
pattern: 正则表达式模式
|
||||
|
||||
Returns:
|
||||
匹配的节点列表
|
||||
"""
|
||||
import re
|
||||
docstore = self.vs_index.storage_context.docstore
|
||||
matched_nodes = []
|
||||
for node in docstore.docs.values():
|
||||
if re.search(pattern, node.text):
|
||||
matched_nodes.append(node)
|
||||
return matched_nodes
|
||||
@@ -1,22 +1,45 @@
|
||||
import os
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
|
||||
supports_format = ['.csv', '.docx', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt',
|
||||
'.pptm', '.pptx']
|
||||
supports_format = ['.csv', '.docx','.doc', '.epub', '.ipynb', '.mbox', '.md', '.pdf', '.txt', '.ppt',
|
||||
'.pptm', '.pptx','.py', '.xls', '.xlsx', '.html', '.json', '.xml', '.yaml', '.yml' ,'.m']
|
||||
|
||||
def read_docx_doc(file_path):
|
||||
if file_path.split(".")[-1] == "docx":
|
||||
from docx import Document
|
||||
doc = Document(file_path)
|
||||
file_content = "\n".join([para.text for para in doc.paragraphs])
|
||||
else:
|
||||
try:
|
||||
import win32com.client
|
||||
word = win32com.client.Dispatch("Word.Application")
|
||||
word.visible = False
|
||||
# 打开文件
|
||||
doc = word.Documents.Open(os.getcwd() + '/' + file_path)
|
||||
# file_content = doc.Content.Text
|
||||
doc = word.ActiveDocument
|
||||
file_content = doc.Range().Text
|
||||
doc.Close()
|
||||
word.Quit()
|
||||
except:
|
||||
raise RuntimeError('请先将.doc文档转换为.docx文档。')
|
||||
return file_content
|
||||
|
||||
# 修改后的 extract_text 函数,结合 SimpleDirectoryReader 和自定义解析逻辑
|
||||
import os
|
||||
|
||||
def extract_text(file_path):
|
||||
_, ext = os.path.splitext(file_path.lower())
|
||||
|
||||
# 使用 SimpleDirectoryReader 处理它支持的文件格式
|
||||
if ext in supports_format:
|
||||
try:
|
||||
reader = SimpleDirectoryReader(input_files=[file_path])
|
||||
documents = reader.load_data()
|
||||
if len(documents) > 0:
|
||||
return documents[0].text
|
||||
except Exception as e:
|
||||
pass
|
||||
if ext in ['.docx', '.doc']:
|
||||
return read_docx_doc(file_path)
|
||||
try:
|
||||
reader = SimpleDirectoryReader(input_files=[file_path])
|
||||
documents = reader.load_data()
|
||||
if len(documents) > 0:
|
||||
return documents[0].text
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
return None
|
||||
|
||||
在新工单中引用
屏蔽一个用户