镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 22:46:48 +00:00
Merge branch 'frontier' of github.com:binary-husky/chatgpt_academic into frontier
这个提交包含在:
@@ -1,6 +1,8 @@
|
|||||||
import os, glob
|
import os,glob
|
||||||
|
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
|
|
||||||
from toolbox import report_exception
|
from toolbox import report_exception
|
||||||
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
from toolbox import CatchException, update_ui, get_conf, get_log_folder, update_ui_lastest_msg
|
||||||
from shared_utils.fastapi_server import validate_path_safety
|
from shared_utils.fastapi_server import validate_path_safety
|
||||||
@@ -13,34 +15,15 @@ MAX_CONTEXT_TOKEN_LIMIT = 4096
|
|||||||
REMEMBER_PREVIEW = 1000
|
REMEMBER_PREVIEW = 1000
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker):
|
||||||
"""
|
"""
|
||||||
Handles document uploads by extracting text and adding it to the vector store.
|
Handles document uploads by extracting text and adding it to the vector store.
|
||||||
|
|
||||||
Args:
|
|
||||||
files (List[str]): List of file paths to process.
|
|
||||||
llm_kwargs: Language model keyword arguments.
|
|
||||||
plugin_kwargs: Plugin keyword arguments.
|
|
||||||
chatbot: Chatbot instance.
|
|
||||||
history: Chat history.
|
|
||||||
system_prompt: System prompt.
|
|
||||||
user_request: User request.
|
|
||||||
"""
|
"""
|
||||||
from llama_index.core import Document
|
from llama_index.core import Document
|
||||||
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format
|
from crazy_functions.rag_fns.rag_file_support import extract_text, supports_format
|
||||||
user_name = chatbot.get_user()
|
user_name = chatbot.get_user()
|
||||||
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
checkpoint_dir = get_log_folder(user_name, plugin_name='experimental_rag')
|
||||||
|
|
||||||
if user_name in RAG_WORKER_REGISTER:
|
|
||||||
rag_worker = RAG_WORKER_REGISTER[user_name]
|
|
||||||
else:
|
|
||||||
rag_worker = RAG_WORKER_REGISTER[user_name] = LlamaIndexRagWorker(
|
|
||||||
user_name,
|
|
||||||
llm_kwargs,
|
|
||||||
checkpoint_dir=checkpoint_dir,
|
|
||||||
auto_load_checkpoint=True
|
|
||||||
)
|
|
||||||
|
|
||||||
for file_path in files:
|
for file_path in files:
|
||||||
try:
|
try:
|
||||||
validate_path_safety(file_path, user_name)
|
validate_path_safety(file_path, user_name)
|
||||||
@@ -59,6 +42,8 @@ def handle_document_upload(files: List[str], llm_kwargs, plugin_kwargs, chatbot,
|
|||||||
|
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Main Q&A function with document upload support
|
# Main Q&A function with document upload support
|
||||||
@CatchException
|
@CatchException
|
||||||
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
|
||||||
@@ -100,7 +85,7 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
|||||||
chatbot.append([txt, f'正在处理上传的文档 ({current_context}) ...'])
|
chatbot.append([txt, f'正在处理上传的文档 ({current_context}) ...'])
|
||||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||||
|
|
||||||
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
|
yield from handle_document_upload(file_paths, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request, rag_worker)
|
||||||
return
|
return
|
||||||
|
|
||||||
elif txt == "清空向量数据库":
|
elif txt == "清空向量数据库":
|
||||||
@@ -145,7 +130,6 @@ def Rag问答(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, u
|
|||||||
# 6. Search vector store and build prompts
|
# 6. Search vector store and build prompts
|
||||||
nodes = rag_worker.retrieve_from_store_with_query(i_say)
|
nodes = rag_worker.retrieve_from_store_with_query(i_say)
|
||||||
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
|
prompt = rag_worker.build_prompt(query=i_say, nodes=nodes)
|
||||||
|
|
||||||
# 7. Query language model
|
# 7. Query language model
|
||||||
if len(chatbot) != 0:
|
if len(chatbot) != 0:
|
||||||
chatbot.pop(-1) # Pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
|
chatbot.pop(-1) # Pop temp chat, because we are going to add them again inside `request_gpt_model_in_new_thread_with_ui_alive`
|
||||||
|
|||||||
在新工单中引用
屏蔽一个用户