镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
logging -> loguru: final stage
这个提交包含在:
@@ -1,6 +1,7 @@
|
||||
import llama_index
|
||||
import os
|
||||
import atexit
|
||||
from loguru import logger
|
||||
from typing import List
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.schema import TextNode
|
||||
@@ -41,14 +42,14 @@ class SaveLoad():
|
||||
return True
|
||||
|
||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
||||
print(f'saving vector store to: {checkpoint_dir}')
|
||||
logger.info(f'saving vector store to: {checkpoint_dir}')
|
||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||
self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
||||
|
||||
def load_from_checkpoint(self, checkpoint_dir=None):
|
||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
||||
print('loading checkpoint from disk')
|
||||
logger.info('loading checkpoint from disk')
|
||||
from llama_index.core import StorageContext, load_index_from_storage
|
||||
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
||||
self.vs_index = load_index_from_storage(storage_context, embed_model=self.embed_model)
|
||||
@@ -85,9 +86,9 @@ class LlamaIndexRagWorker(SaveLoad):
|
||||
self.vs_index.storage_context.index_store.to_dict()
|
||||
docstore = self.vs_index.storage_context.docstore.docs
|
||||
vector_store_preview = "\n".join([ f"{_id} | {tn.text}" for _id, tn in docstore.items() ])
|
||||
print('\n++ --------inspect_vector_store begin--------')
|
||||
print(vector_store_preview)
|
||||
print('oo --------inspect_vector_store end--------')
|
||||
logger.info('\n++ --------inspect_vector_store begin--------')
|
||||
logger.info(vector_store_preview)
|
||||
logger.info('oo --------inspect_vector_store end--------')
|
||||
return vector_store_preview
|
||||
|
||||
def add_documents_to_vector_store(self, document_list):
|
||||
@@ -125,5 +126,5 @@ class LlamaIndexRagWorker(SaveLoad):
|
||||
|
||||
def generate_node_array_preview(self, nodes):
|
||||
buf = "\n".join(([f"(No.{i+1} | score {n.score:.3f}): {n.text}" for i, n in enumerate(nodes)]))
|
||||
if self.debug_mode: print(buf)
|
||||
if self.debug_mode: logger.info(buf)
|
||||
return buf
|
||||
|
||||
@@ -2,6 +2,7 @@ import llama_index
|
||||
import os
|
||||
import atexit
|
||||
from typing import List
|
||||
from loguru import logger
|
||||
from llama_index.core import Document
|
||||
from llama_index.core.schema import TextNode
|
||||
from request_llms.embed_models.openai_embed import OpenAiEmbeddingModel
|
||||
@@ -44,14 +45,14 @@ class MilvusSaveLoad():
|
||||
return True
|
||||
|
||||
def save_to_checkpoint(self, checkpoint_dir=None):
|
||||
print(f'saving vector store to: {checkpoint_dir}')
|
||||
logger.info(f'saving vector store to: {checkpoint_dir}')
|
||||
# if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||
# self.vs_index.storage_context.persist(persist_dir=checkpoint_dir)
|
||||
|
||||
def load_from_checkpoint(self, checkpoint_dir=None):
|
||||
if checkpoint_dir is None: checkpoint_dir = self.checkpoint_dir
|
||||
if self.does_checkpoint_exist(checkpoint_dir=checkpoint_dir):
|
||||
print('loading checkpoint from disk')
|
||||
logger.info('loading checkpoint from disk')
|
||||
from llama_index.core import StorageContext, load_index_from_storage
|
||||
storage_context = StorageContext.from_defaults(persist_dir=checkpoint_dir)
|
||||
try:
|
||||
@@ -101,7 +102,7 @@ class MilvusRagWorker(MilvusSaveLoad, LlamaIndexRagWorker):
|
||||
vector_store_preview = "\n".join(
|
||||
[f"{node.id_} | {node.text}" for node in dummy_retrieve_res]
|
||||
)
|
||||
print('\n++ --------inspect_vector_store begin--------')
|
||||
print(vector_store_preview)
|
||||
print('oo --------inspect_vector_store end--------')
|
||||
logger.info('\n++ --------inspect_vector_store begin--------')
|
||||
logger.info(vector_store_preview)
|
||||
logger.info('oo --------inspect_vector_store end--------')
|
||||
return vector_store_preview
|
||||
|
||||
在新工单中引用
屏蔽一个用户