镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
Add ChatGLM4 local deployment support and refactor ChatGLM bridge's path configuration (#2062)
* ✨ feat(request_llms and config.py): ChatGLM4 Deployment Add support for local deployment of ChatGLM4 model * 🦄 refactor(bridge_chatglm3.py): ChatGLM3 model path Added ChatGLM3 path customization (in config.py). Removed useless quantization model options that have been annotated --------- Co-authored-by: MarkDeia <17290550+MarkDeia@users.noreply.github.com>
这个提交包含在:
81
request_llms/bridge_chatglm4.py
普通文件
81
request_llms/bridge_chatglm4.py
普通文件
@@ -0,0 +1,81 @@
|
||||
model_name = "ChatGLM4"
|
||||
cmd_to_install = """
|
||||
`pip install -r request_llms/requirements_chatglm4.txt`
|
||||
`pip install modelscope`
|
||||
`modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat`
|
||||
"""
|
||||
|
||||
|
||||
from toolbox import get_conf, ProxyNetworkActivate
|
||||
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 Local Model
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
class GetGLM4Handle(LocalLLMHandle):
|
||||
|
||||
def load_model_info(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
self.model_name = model_name
|
||||
self.cmd_to_install = cmd_to_install
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
import torch
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
||||
import os
|
||||
|
||||
LOCAL_MODEL_PATH, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_DEVICE")
|
||||
model_path = LOCAL_MODEL_PATH
|
||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
chatglm_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
trust_remote_code=True,
|
||||
device=device
|
||||
).eval().to(device)
|
||||
self._model = chatglm_model
|
||||
self._tokenizer = chatglm_tokenizer
|
||||
return self._model, self._tokenizer
|
||||
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
def adaptor(kwargs):
|
||||
query = kwargs["query"]
|
||||
max_length = kwargs["max_length"]
|
||||
top_p = kwargs["top_p"]
|
||||
temperature = kwargs["temperature"]
|
||||
history = kwargs["history"]
|
||||
return query, max_length, top_p, temperature, history
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
inputs = self._tokenizer.apply_chat_template([{"role": "user", "content": query}],
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_tensors="pt",
|
||||
return_dict=True
|
||||
).to(self._model.device)
|
||||
gen_kwargs = {"max_length": max_length, "do_sample": True, "top_k": top_p}
|
||||
|
||||
outputs = self._model.generate(**inputs, **gen_kwargs)
|
||||
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
||||
response = self._tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
yield response
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
import importlib
|
||||
|
||||
# importlib.import_module('modelscope')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 GPT-Academic Interface
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
|
||||
GetGLM4Handle, model_name, history_format="chatglm3"
|
||||
)
|
||||
在新工单中引用
屏蔽一个用户