Add ChatGLM4 local deployment support and refactor ChatGLM bridge's path configuration (#2062)

*  feat(request_llms and config.py): ChatGLM4 Deployment

Add support for local deployment of ChatGLM4 model

* 🦄 refactor(bridge_chatglm3.py): ChatGLM3 model path

Added ChatGLM3 path customization (in config.py).
Removed useless quantization model options that have been annotated

---------

Co-authored-by: MarkDeia <17290550+MarkDeia@users.noreply.github.com>
这个提交包含在:
YE Ke 叶柯
2024-12-07 23:43:51 +08:00
提交者 GitHub
父节点 239894544e
当前提交 294df6c2d5
共有 6 个文件被更改,包括 124 次插入20 次删除

查看文件

@@ -23,39 +23,33 @@ class GetGLM3Handle(LocalLLMHandle):
import os
import platform
LOCAL_MODEL_QUANT, device = get_conf("LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
_model_name_ = "THUDM/chatglm3-6b"
# if LOCAL_MODEL_QUANT == "INT4": # INT4
# _model_name_ = "THUDM/chatglm3-6b-int4"
# elif LOCAL_MODEL_QUANT == "INT8": # INT8
# _model_name_ = "THUDM/chatglm3-6b-int8"
# else:
# _model_name_ = "THUDM/chatglm3-6b" # FP16
LOCAL_MODEL_PATH, LOCAL_MODEL_QUANT, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
model_path = LOCAL_MODEL_PATH
with ProxyNetworkActivate("Download_LLM"):
chatglm_tokenizer = AutoTokenizer.from_pretrained(
_model_name_, trust_remote_code=True
model_path, trust_remote_code=True
)
if device == "cpu":
chatglm_model = AutoModel.from_pretrained(
_model_name_,
model_path,
trust_remote_code=True,
device="cpu",
).float()
elif LOCAL_MODEL_QUANT == "INT4": # INT4
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
pretrained_model_name_or_path=model_path,
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
)
elif LOCAL_MODEL_QUANT == "INT8": # INT8
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
pretrained_model_name_or_path=model_path,
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
)
else:
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
pretrained_model_name_or_path=model_path,
trust_remote_code=True,
device="cuda",
)