Add ChatGLM4 local deployment support and refactor ChatGLM bridge's path configuration (#2062)

*  feat(request_llms and config.py): ChatGLM4 Deployment

Add support for local deployment of ChatGLM4 model

* 🦄 refactor(bridge_chatglm3.py): ChatGLM3 model path

Added ChatGLM3 path customization (in config.py).
Removed useless quantization model options that have been annotated

---------

Co-authored-by: MarkDeia <17290550+MarkDeia@users.noreply.github.com>
这个提交包含在:
YE Ke 叶柯
2024-12-07 23:43:51 +08:00
提交者 GitHub
父节点 239894544e
当前提交 294df6c2d5
共有 6 个文件被更改,包括 124 次插入20 次删除

查看文件

@@ -26,6 +26,9 @@ from .bridge_chatglm import predict as chatglm_ui
from .bridge_chatglm3 import predict_no_ui_long_connection as chatglm3_noui
from .bridge_chatglm3 import predict as chatglm3_ui
from .bridge_chatglm4 import predict_no_ui_long_connection as chatglm4_noui
from .bridge_chatglm4 import predict as chatglm4_ui
from .bridge_qianfan import predict_no_ui_long_connection as qianfan_noui
from .bridge_qianfan import predict as qianfan_ui
@@ -416,6 +419,7 @@ model_info = {
"token_cnt": get_token_num_gpt4,
},
# ChatGLM本地模型
# 将 chatglm 直接对齐到 chatglm2
"chatglm": {
"fn_with_ui": chatglm_ui,
@@ -441,6 +445,14 @@ model_info = {
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"chatglm4": {
"fn_with_ui": chatglm4_ui,
"fn_without_ui": chatglm4_noui,
"endpoint": None,
"max_token": 8192,
"tokenizer": tokenizer_gpt35,
"token_cnt": get_token_num_gpt35,
},
"qianfan": {
"fn_with_ui": qianfan_ui,
"fn_without_ui": qianfan_noui,

查看文件

@@ -23,39 +23,33 @@ class GetGLM3Handle(LocalLLMHandle):
import os
import platform
LOCAL_MODEL_QUANT, device = get_conf("LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
_model_name_ = "THUDM/chatglm3-6b"
# if LOCAL_MODEL_QUANT == "INT4": # INT4
# _model_name_ = "THUDM/chatglm3-6b-int4"
# elif LOCAL_MODEL_QUANT == "INT8": # INT8
# _model_name_ = "THUDM/chatglm3-6b-int8"
# else:
# _model_name_ = "THUDM/chatglm3-6b" # FP16
LOCAL_MODEL_PATH, LOCAL_MODEL_QUANT, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
model_path = LOCAL_MODEL_PATH
with ProxyNetworkActivate("Download_LLM"):
chatglm_tokenizer = AutoTokenizer.from_pretrained(
_model_name_, trust_remote_code=True
model_path, trust_remote_code=True
)
if device == "cpu":
chatglm_model = AutoModel.from_pretrained(
_model_name_,
model_path,
trust_remote_code=True,
device="cpu",
).float()
elif LOCAL_MODEL_QUANT == "INT4": # INT4
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
pretrained_model_name_or_path=model_path,
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
)
elif LOCAL_MODEL_QUANT == "INT8": # INT8
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
pretrained_model_name_or_path=model_path,
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
)
else:
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
pretrained_model_name_or_path=model_path,
trust_remote_code=True,
device="cuda",
)

查看文件

@@ -0,0 +1,81 @@
model_name = "ChatGLM4"
cmd_to_install = """
`pip install -r request_llms/requirements_chatglm4.txt`
`pip install modelscope`
`modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat`
"""
from toolbox import get_conf, ProxyNetworkActivate
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetGLM4Handle(LocalLLMHandle):
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
import torch
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
import os
LOCAL_MODEL_PATH, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_DEVICE")
model_path = LOCAL_MODEL_PATH
chatglm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
chatglm_model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device=device
).eval().to(device)
self._model = chatglm_model
self._tokenizer = chatglm_tokenizer
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor(kwargs):
query = kwargs["query"]
max_length = kwargs["max_length"]
top_p = kwargs["top_p"]
temperature = kwargs["temperature"]
history = kwargs["history"]
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
inputs = self._tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(self._model.device)
gen_kwargs = {"max_length": max_length, "do_sample": True, "top_k": top_p}
outputs = self._model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = self._tokenizer.decode(outputs[0], skip_special_tokens=True)
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行
import importlib
# importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
GetGLM4Handle, model_name, history_format="chatglm3"
)

查看文件

@@ -0,0 +1,7 @@
protobuf
cpm_kernels
torch>=1.10
transformers>=4.44
mdtex2html
sentencepiece
accelerate