镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-10 00:16:48 +00:00
format file
这个提交包含在:
@@ -1,31 +1,32 @@
|
||||
|
||||
|
||||
|
||||
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
||||
# 用户反馈
|
||||
chatbot.append([inputs_show_user, ""]); msg = '正常'
|
||||
chatbot.append([inputs_show_user, ""])
|
||||
msg = '正常'
|
||||
yield chatbot, [], msg
|
||||
executor = ThreadPoolExecutor(max_workers=16)
|
||||
mutable = ["", time.time()]
|
||||
future = executor.submit(lambda:
|
||||
predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
|
||||
)
|
||||
predict_no_ui_long_connection(
|
||||
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
|
||||
)
|
||||
while True:
|
||||
# yield一次以刷新前端页面
|
||||
time.sleep(refresh_interval)
|
||||
# “喂狗”(看门狗)
|
||||
mutable[1] = time.time()
|
||||
if future.done(): break
|
||||
chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
|
||||
if future.done():
|
||||
break
|
||||
chatbot[-1] = [chatbot[-1][0], mutable[0]]
|
||||
msg = "正常"
|
||||
yield chatbot, [], msg
|
||||
return future.result()
|
||||
|
||||
|
||||
|
||||
|
||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
@@ -35,34 +36,46 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
|
||||
executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||
n_frag = len(inputs_array)
|
||||
# 用户反馈
|
||||
chatbot.append(["请开始多线程操作。", ""]); msg = '正常'
|
||||
chatbot.append(["请开始多线程操作。", ""])
|
||||
msg = '正常'
|
||||
yield chatbot, [], msg
|
||||
# 异步原子
|
||||
mutable = [["", time.time()] for _ in range(n_frag)]
|
||||
|
||||
def _req_gpt(index, inputs, history, sys_prompt):
|
||||
gpt_say = predict_no_ui_long_connection(
|
||||
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
|
||||
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[
|
||||
index]
|
||||
)
|
||||
return gpt_say
|
||||
# 异步任务开始
|
||||
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
||||
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
||||
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
||||
cnt = 0
|
||||
while True:
|
||||
# yield一次以刷新前端页面
|
||||
time.sleep(refresh_interval); cnt += 1
|
||||
time.sleep(refresh_interval)
|
||||
cnt += 1
|
||||
worker_done = [h.done() for h in futures]
|
||||
if all(worker_done): executor.shutdown(); break
|
||||
if all(worker_done):
|
||||
executor.shutdown()
|
||||
break
|
||||
# 更好的UI视觉效果
|
||||
observe_win = []
|
||||
# 每个线程都要“喂狗”(看门狗)
|
||||
for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
|
||||
for thread_index, _ in enumerate(worker_done):
|
||||
mutable[thread_index][1] = time.time()
|
||||
# 在前端打印些好玩的东西
|
||||
for thread_index, _ in enumerate(worker_done):
|
||||
for thread_index, _ in enumerate(worker_done):
|
||||
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
||||
replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
|
||||
replace('\n', '').replace('```', '...').replace(
|
||||
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||||
observe_win.append(print_something_really_funny)
|
||||
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
|
||||
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
|
||||
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
|
||||
worker_done, observe_win)])
|
||||
chatbot[-1] = [chatbot[-1][0],
|
||||
f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
|
||||
msg = "正常"
|
||||
yield chatbot, [], msg
|
||||
# 异步任务结束
|
||||
gpt_response_collection = []
|
||||
@@ -72,23 +85,23 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
|
||||
return gpt_response_collection
|
||||
|
||||
|
||||
|
||||
|
||||
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
||||
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
||||
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
||||
if get_token_fn(txt_tocut) <= limit:
|
||||
return [txt_tocut]
|
||||
else:
|
||||
lines = txt_tocut.split('\n')
|
||||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||||
estimated_line_cut = int(estimated_line_cut)
|
||||
for cnt in reversed(range(estimated_line_cut)):
|
||||
if must_break_at_empty_line:
|
||||
if lines[cnt] != "": continue
|
||||
if must_break_at_empty_line:
|
||||
if lines[cnt] != "":
|
||||
continue
|
||||
print(cnt)
|
||||
prev = "\n".join(lines[:cnt])
|
||||
post = "\n".join(lines[cnt:])
|
||||
if get_token_fn(prev) < limit: break
|
||||
if get_token_fn(prev) < limit:
|
||||
break
|
||||
if cnt == 0:
|
||||
print('what the fuck ?')
|
||||
raise RuntimeError("存在一行极长的文本!")
|
||||
@@ -102,22 +115,25 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
||||
except RuntimeError:
|
||||
return cut(txt, must_break_at_empty_line=False)
|
||||
|
||||
|
||||
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
||||
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
||||
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
||||
if get_token_fn(txt_tocut) <= limit:
|
||||
return [txt_tocut]
|
||||
else:
|
||||
lines = txt_tocut.split('\n')
|
||||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||||
estimated_line_cut = int(estimated_line_cut)
|
||||
cnt = 0
|
||||
for cnt in reversed(range(estimated_line_cut)):
|
||||
if must_break_at_empty_line:
|
||||
if lines[cnt] != "": continue
|
||||
if must_break_at_empty_line:
|
||||
if lines[cnt] != "":
|
||||
continue
|
||||
print(cnt)
|
||||
prev = "\n".join(lines[:cnt])
|
||||
post = "\n".join(lines[cnt:])
|
||||
if get_token_fn(prev) < limit: break
|
||||
if get_token_fn(prev) < limit:
|
||||
break
|
||||
if cnt == 0:
|
||||
# print('what the fuck ? 存在一行极长的文本!')
|
||||
raise RuntimeError("存在一行极长的文本!")
|
||||
@@ -135,4 +151,3 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
||||
# 这个中文的句号是故意的,作为一个标识而存在
|
||||
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
|
||||
return [r.replace('。\n', '.') for r in res]
|
||||
|
||||
|
||||
在新工单中引用
屏蔽一个用户