镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-08 15:36:48 +00:00
version 3.6
这个提交包含在:
@@ -14,7 +14,7 @@ import math
|
||||
class GROBID_OFFLINE_EXCEPTION(Exception): pass
|
||||
|
||||
def get_avail_grobid_url():
|
||||
GROBID_URLS, = get_conf('GROBID_URLS')
|
||||
GROBID_URLS = get_conf('GROBID_URLS')
|
||||
if len(GROBID_URLS) == 0: return None
|
||||
try:
|
||||
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
|
||||
@@ -73,7 +73,7 @@ def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chat
|
||||
return res_path
|
||||
|
||||
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
|
||||
from crazy_functions.crazy_utils import construct_html
|
||||
from crazy_functions.pdf_fns.report_gen_html import construct_html
|
||||
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||
@@ -82,7 +82,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
||||
# title
|
||||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
||||
# authors
|
||||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
||||
authors = article_dict.get('authors', '无法获取 authors')[:100]; prompt += f'authors:{authors}\n\n'
|
||||
# abstract
|
||||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
||||
# command
|
||||
@@ -103,7 +103,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
||||
inputs_show_user_array = []
|
||||
|
||||
# get_token_num
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
|
||||
|
||||
在新工单中引用
屏蔽一个用户