这个提交包含在:
青轩
2024-11-24 23:18:33 +08:00
父节点 e62decac21
当前提交 16567d3a44
共有 128 个文件被更改,包括 6 次插入29560 次删除

查看文件

@@ -1 +0,0 @@
# 此Dockerfile不再维护,请前往docs/GithubAction+ChatGLM+Moss

查看文件

@@ -1 +0,0 @@
# 此Dockerfile不再维护,请前往docs/GithubAction+NoLocal+Latex

查看文件

@@ -1,39 +0,0 @@
# docker build -t gpt-academic-all-capacity -f docs/GithubAction+AllCapacity --network=host --build-arg http_proxy=http://localhost:10881 --build-arg https_proxy=http://localhost:10881 .
# 从NVIDIA源,从而支持显卡检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM fuqingxu/11.3.1-runtime-ubuntu20.04-with-texlive:latest
# edge-tts需要的依赖,某些pip包所需的依赖
RUN apt update && apt install ffmpeg build-essential -y
# use python3 as the system default python
WORKDIR /gpt
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载pytorch
RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 准备pip依赖
RUN python3 -m pip install openai numpy arxiv rich
RUN python3 -m pip install colorama Markdown pygments pymupdf
RUN python3 -m pip install python-docx moviepy pdfminer
RUN python3 -m pip install zh_langchain==0.2.1 pypinyin
RUN python3 -m pip install rarfile py7zr
RUN python3 -m pip install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
# 下载分支
WORKDIR /gpt
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llms/requirements_moss.txt
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
RUN python3 -m pip install nougat-ocr
# 预热Tiktoken模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,31 +0,0 @@
# 从NVIDIA源,从而支持显卡运损检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
RUN apt-get update
RUN apt-get install -y curl proxychains curl gcc
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
# edge-tts需要的依赖,某些pip包所需的依赖
RUN apt update && apt install ffmpeg build-essential -y
# use python3 as the system default python
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载pytorch
RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 下载分支
WORKDIR /gpt
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llms/requirements_moss.txt
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
# 预热Tiktoken模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,37 +0,0 @@
# 从NVIDIA源,从而支持显卡运损检查宿主的nvidia-smi中的cuda版本必须>=11.3
FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
ARG useProxyNetwork=''
RUN apt-get update
RUN apt-get install -y curl proxychains curl g++
RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
# use python3 as the system default python
RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载pytorch
RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
# 下载分支
WORKDIR /gpt
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
WORKDIR /gpt/gpt_academic
RUN python3 -m pip install -r requirements.txt
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
RUN python3 -m pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I
# 下载JittorLLMs
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llms/jittorllms
# edge-tts需要的依赖
RUN apt update && apt install ffmpeg -y
# 禁用缓存,确保更新代码
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
RUN git pull
# 预热Tiktoken模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,22 +0,0 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# 如何构建: 先修改 `config.py`, 然后 docker build -t gpt-academic-nolocal -f docs/Dockerfile+NoLocal .
# 如何运行: docker run --rm -it --net=host gpt-academic-nolocal
FROM python:3.11
# 指定路径
WORKDIR /gpt
# 装载项目文件
COPY . .
# 安装依赖
RUN pip3 install -r requirements.txt
# edge-tts需要的依赖
RUN apt update && apt install ffmpeg -y
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,25 +0,0 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# 如何构建: 先修改 `config.py`, 然后 docker build -t gpt-academic-nolocal -f docs/Dockerfile+NoLocal .
# 如何运行: docker run --rm -it --net=host gpt-academic-nolocal
FROM python:3.11
# 指定路径
WORKDIR /gpt
# 装载项目文件
COPY . .
# 安装依赖
RUN pip3 install -r requirements.txt
# 安装语音插件的额外依赖
RUN pip3 install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
# edge-tts需要的依赖
RUN apt update && apt install ffmpeg -y
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,34 +0,0 @@
# 此Dockerfile适用于"无本地模型"的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# - 1 修改 `config.py`
# - 2 构建 docker build -t gpt-academic-nolocal-latex -f docs/GithubAction+NoLocal+Latex .
# - 3 运行 docker run -v /home/fuqingxu/arxiv_cache:/root/arxiv_cache --rm -it --net=host gpt-academic-nolocal-latex
FROM menghuan1918/ubuntu_uv_ctex:latest
ENV DEBIAN_FRONTEND=noninteractive
SHELL ["/bin/bash", "-c"]
WORKDIR /gpt
# 先复制依赖文件
COPY requirements.txt .
# 安装依赖
RUN pip install --break-system-packages openai numpy arxiv rich colorama Markdown pygments pymupdf python-docx pdfminer \
&& pip install --break-system-packages -r requirements.txt \
&& if [ "$(uname -m)" = "x86_64" ]; then \
pip install --break-system-packages nougat-ocr; \
fi \
&& pip cache purge \
&& rm -rf /root/.cache/pip/*
# 创建非root用户
RUN useradd -m gptuser && chown -R gptuser /gpt
USER gptuser
# 最后才复制代码文件,这样代码更新时只需重建最后几层,可以大幅减少docker pull所需的大小
COPY --chown=gptuser:gptuser . .
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,29 +0,0 @@
# 此Dockerfile适用于“无本地模型”的环境构建,如果需要使用chatglm等本地模型,请参考 docs/Dockerfile+ChatGLM
# 如何构建: 先修改 `config.py`, 然后 docker build -t gpt-academic-nolocal-vs -f docs/GithubAction+NoLocal+Vectordb .
# 如何运行: docker run --rm -it --net=host gpt-academic-nolocal-vs
FROM python:3.11
# 指定路径
WORKDIR /gpt
# 装载项目文件
COPY . .
# 安装依赖
RUN pip3 install -r requirements.txt
# 安装知识库插件的额外依赖
RUN apt-get update && apt-get install libgl1 -y
RUN pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cpu
RUN pip3 install transformers protobuf langchain sentence-transformers faiss-cpu nltk beautifulsoup4 bitsandbytes tabulate icetk --upgrade
RUN pip3 install unstructured[all-docs] --upgrade
RUN python3 -c 'from check_proxy import warm_up_vectordb; warm_up_vectordb()'
# edge-tts需要的依赖
RUN apt update && apt install ffmpeg -y
# 可选步骤,用于预热模块
RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
# 启动
CMD ["python3", "-u", "main.py"]

查看文件

@@ -1,343 +0,0 @@
> **ملحوظة**
>
> تمت ترجمة هذا الملف README باستخدام GPT (بواسطة المكون الإضافي لهذا المشروع) وقد لا تكون الترجمة 100٪ موثوقة، يُرجى التمييز بعناية بنتائج الترجمة.
>
> 2023.11.7: عند تثبيت التبعيات، يُرجى اختيار الإصدار المُحدد في `requirements.txt`. الأمر للتثبيت: `pip install -r requirements.txt`.
# <div align=center><img src="logo.png" width="40"> GPT الأكاديمي</div>
**إذا كنت تحب هذا المشروع، فيُرجى إعطاؤه Star. لترجمة هذا المشروع إلى لغة عشوائية باستخدام GPT، قم بقراءة وتشغيل [`multi_language.py`](multi_language.py) (تجريبي).
> **ملحوظة**
>
> 1. يُرجى ملاحظة أنها الإضافات (الأزرار) المميزة فقط التي تدعم قراءة الملفات، وبعض الإضافات توجد في قائمة منسدلة في منطقة الإضافات. بالإضافة إلى ذلك، نرحب بأي Pull Request جديد بأعلى أولوية لأي إضافة جديدة.
>
> 2. تُوضّح كل من الملفات في هذا المشروع وظيفتها بالتفصيل في [تقرير الفهم الذاتي `self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告). يمكنك في أي وقت أن تنقر على إضافة وظيفة ذات صلة لاستدعاء GPT وإعادة إنشاء تقرير الفهم الذاتي للمشروع. للأسئلة الشائعة [`الويكي`](https://github.com/binary-husky/gpt_academic/wiki). [طرق التثبيت العادية](#installation) | [نصب بنقرة واحدة](https://github.com/binary-husky/gpt_academic/releases) | [تعليمات التكوين](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
>
> 3. يتم توافق هذا المشروع مع ودعم توصيات اللغة البيجائية الأكبر شمولًا وشجاعة لمثل ChatGLM. يمكنك توفير العديد من مفاتيح Api المشتركة في تكوين الملف، مثل `API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`. عند تبديل مؤقت لـ `API_KEY`، قم بإدخال `API_KEY` المؤقت في منطقة الإدخال ثم اضغط على زر "إدخال" لجعله ساري المفعول.
<div align="center">
الوظائف (⭐= وظائف مُضافة حديثًا) | الوصف
--- | ---
⭐[التوصل لنموذج جديد](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B)! | بحث بيدو[تشيان فان](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu) ووينسين[جينرال](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary)، مختبرات شنغهاي للذكاء الصناعي[شو شينغ](https://github.com/InternLM/InternLM)، إكسنفلام[زينغهو]https://xinghuo.xfyun.cn/)، [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)، واجهة بيانية ذكية و3 خدمات إضافية [DALLE3]
الجودة الفائقة، الترجمة، شرح الكود | الإصلاح الفوري للاخطاء النحوية في الأبحاث وترجمة وتحسين التصريف اللغوي للأكواد
[اختصارات مخصصة](https://www.bilibili.com/video/BV14s4y1E7jN) | دعم الاختصارات المخصصة
تصميم قابل للتوسيع | دعم الإضافات القوية المخصصة (الوظائف)، الإضافات قابلة للتحديث بشكل فوري
[تحليل البرنامج](https://www.bilibili.com/video/BV1cj411A7VW) | [وظائف] التحليل الشجري بناءً على البرنامج من Python/C/C++/Java/Lua/..., أو [التحليل الذاتي](https://www.bilibili.com/video/BV1cj411A7VW)
قراءة وترجمة الأبحاث | [وظائف] فك تشفير كامل لأوراق البحث بتنسيق LaTeX/PDF وإنشاء مستخلص
ترجمة وتحسين أوراق اللاتكس | [وظائف] ترجمة أو تحسين الأوراق المكتوبة بلاتكس
إنشاء تعليقات الدوال دفعة واحدة | [وظائف] إنشاء تعليقات الدوال بدفعة واحدة
ترجمة Markdown بين اللغتين العربية والإنجليزية | [وظائف] هل رأيت الـ 5 لغات المستخدمة في منشور [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) ؟
إنشاء تقرير تحليل الدردشة | [وظائف] إنشاء تقرير ملخص بعد تشغيله
ترجمة كاملة لأوراق PDF | [وظائف] تحليل الأوراق بتنسيق PDF لتحديد العنوان وملخصها وترجمتها (متعدد الخيوط)
مساعدة Arxiv | [وظائف] قم بإدخال رابط مقال Arxiv لترجمة الملخص وتحميل ملف PDF
تصحيح لاتكس بضغطة زر واحدة | [وظائف] إكمال تصحيح لاتكس بناءً على التركيبة النحوية، إخراج همز المقابل للمقارنة PDF
مساعد بحث Google بنسخة محلية | [وظائف] قم بتقديم رابط لصفحة بحث Google Scholar العشوائي حتى يساعدك GPT في كتابة [الأبحاث المتعلقة](https://www.bilibili.com/video/BV1GP411U7Az/)
تجميع معلومات الويب + GPT | [وظائف] جمع المعلومات من الويب بشكل سهل للرد على الأسئلة لجعل المعلومات محدثة باستمرار
⭐ترجمة دقيقة لأوراق Arxiv ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [وظائف] ترجمة مقالات Arxiv عالية الجودة بنقرة واحدة، أفضل أداة حاليا للترجمة
⭐[إدخال الصوت الفوري](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [وظائف] (غير متزامن) استماع الصوت وقطعه تلقائيًا وتحديد وقت الإجابة تلقائيًا
عرض الصيغ/الصور/الجداول | يمكن عرض الصيغ بشكل [TEX](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png) وأيضًا بتنسيق رسومي، يدعم عرض الصيغ وإبراز الكود
⭐إضغط على وكيل "شارلوت الذكي" | [وظائف] استكمال الذكاء للكأس الأول للذكاء المكتسب من مايكروسوفت، اكتشاف وتطوير عالمي العميل
تبديل الواجهة المُظلمة | يمكنك التبديل إلى الواجهة المظلمة بإضافة ```/?__theme=dark``` إلى نهاية عنوان URL في المتصفح
دعم المزيد من نماذج LLM | دعم لجميع GPT3.5 وGPT4 و[ChatGLM2 في جامعة ثوه في لين](https://github.com/THUDM/ChatGLM2-6B) و[MOSS في جامعة فودان](https://github.com/OpenLMLab/MOSS)
⭐تحوي انطباعة "ChatGLM2" | يدعم استيراد "ChatGLM2" ويوفر إضافة المساعدة في تعديله
دعم المزيد من نماذج "LLM"، دعم [نشر الحديس](https://huggingface.co/spaces/qingxu98/gpt-academic) | انضم إلى واجهة "Newbing" (Bing الجديدة)،نقدم نماذج Jittorllms الجديدة تؤيدهم [LLaMA](https://github.com/facebookresearch/llama) و [盘古α](https://openi.org.cn/pangu/)
⭐حزمة "void-terminal" للشبكة (pip) | قم بطلب كافة وظائف إضافة هذا المشروع في python بدون واجهة رسومية (قيد التطوير)
⭐PCI-Express لإعلام (PCI) | [وظائف] باللغة الطبيعية، قم بتنفيذ المِهام الأخرى في المشروع
المزيد من العروض (إنشاء الصور وغيرها)……| شاهد أكثر في نهاية هذا المستند ...
</div>
- شكل جديد (عن طريق تعديل الخيار LAYOUT في `config.py` لقانون التوزيع "اليمين أو اليسار" أو "الأعلى أو الأسفل")
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
- جميع الأزرار يتم إنشاؤها ديناميكيًا من خلال قراءة functional.py ويمكن إضافة وظائف مخصصة بحرية وتحرير الحافظة
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- التجميل / التحوير
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- إذا تضمّن الإخراج معادلات، فسيتم عرضها بشكلٍ يمكّن من النسخ والقراءة على النحوين: TEX ورسومية.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- هل تشعر بالكسل من قراءة كود المشروع؟ قم بمدها مباشرةً إلى ChatGPT
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- دمج نماذج اللغات الكبيرة المختلفة (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# Installation
### طريقة التثبيت الأولى: التشغيل المباشر (Windows، Linux أو MacOS)
1. قم بتنزيل المشروع
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. قم بتكوين لغة البرمجة Python
في ملف `config.py`، قم بتكوين مفتاح الواجهة API والإعدادات الأخرى، [انقر هنا للاطلاع على طريقة تكوين الإعدادات في بيئة شبكة خاصة](https://github.com/binary-husky/gpt_academic/issues/1). [انقر هنا لزيارة صفحة الويكي](https://github.com/binary-husky/gpt_academic/wiki/توضيحات-تكوين-المشروع).
" ستقوم البرنامج بفحص وجود ملف تكوين خاص يسمى `config_private.py` بأولوية، وسيستخدم التكوينات الموجودة فيه لتجاوز التكوينات ذات الأسماء المطابقة في `config.py`. إذا كنت تفهم هذه الطريقة ونظام القراءة، فإننا نوصي بشدة بإنشاء ملف تكوين جديد يسمى `config_private.py` بجوار `config.py` ونقل (نسخ) التكوينات الموجودة في `config.py` إلى `config_private.py` (يجب نسخ العناصر التي قمت بتعديلها فقط). "
" يدعم المشروع التكوين من خلال `المتغيرات المحيطية`، ويمكن تحديد تنسيق كتابة المتغيرات المحيطية من خلال ملف `docker-compose.yml` أو صفحة الويكي الخاصة بنا. تعتمد أولوية القراءة على التكوينات على التالي: `المتغيرات المحيطية` > `config_private.py` > `config.py`. "
3. قم بتثبيت التبعيات
```sh
# (الخيار الأول: إذا كنت تعرف Python، python>=3.9) الملحوظة: استخدم مستودع pip الرسمي أو مستودع pip آلي بباي، يمكن تغيير المستودع المؤقت بواسطة الأمر: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (الخيار الثاني: باستخدام Anaconda) الخطوات مشابهة (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # إنشاء بيئة Anaconda
conda activate gptac_venv # تنشيط بيئة Anaconda
python -m pip install -r requirements.txt # هذه الخطوة مطابقة لخطوة تثبيت pip
```
<details><summary>إذا كنت بحاجة إلى دعم ChatGLM2 من الجامعة الصينية للاقتصاد وإدارة الأعمال وموس من جامعة فودان كخادم وجودة عالية لطرح الأسئلة، انقر هنا للعرض</summary>
<p>
【خطوات اختيارية】إذا كنت بحاجة إلى دعم جودة عالية لتشات جامعة تسينهوا (ChatGLM2) الصينية وجامعة فودان (MOSS)، يتعين عليك تثبيت تبعيات إضافية (شرط مسبق: التعامل مع Python واستخدام Pytorch وتوفر الحاسوب الشخصي بمواصفات قوية):
```sh
# 【خطوات اختيارية 1】دعم جودة عالية لتشات جامعة تسينهوا (ChatGLM2)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【خطوات اختيارية 2】دعم جودة عالية لتشات جامعة فودان (MOSS)
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # عند تنفيذ هذا الأمر، يجب أن تكون في مسار المشروع الرئيسي
# 【خطوات اختيارية 3】دعم RWKV Runner
راجع الويكي: https://github.com/binary-husky/gpt_academic/wiki/دليل-تكوين-RWKV
# 【خطوات اختيارية 4】تأكد من أن ملف التكوين config.py يحتوي على النماذج المرجوة، وهناك النماذج المدعومة حاليًا التالية (توجد خطط لتشغيل "jittorllms" في docker فقط):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. تشغيل البرنامج
```sh
python main.py
```
### طريقة التثبيت الثانية: استخدام Docker
0. نصب القدرات الكاملة للمشروع (هذا هو الصورة الكبيرة التي تحتوي على CUDA و LaTeX. ولكن إذا كانت سرعة الإنترنت بطيئة أو القرص الصلب صغير، فإننا لا نوصي باستخدام هذا الخيار)
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# قم بتعديل ملف docker-compose.yml للحفاظ على الخطة رقم 0 وحذف الخطط الأخرى. ثم أشغل:
docker-compose up
```
1. تشغيل نموذج ChatGPT فقط + 文心一言 (Wenxin YIYan) + Spark عبر الإنترنت (يُوصى بهذا الخيار للمعظم)
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
# قم بتعديل ملف docker-compose.yml للحفاظ على الخطة رقم 1 وحذف الخطط الأخرى. ثم أشغل:
docker-compose up
```
P.S. للاستفادة من إمكانية اللافتكس الإضافية، يرجى الرجوع إلى الويكي. بالإضافة إلى ذلك، يمكنك استخدام الخطة 4 أو الخطة 0 مباشرة للحصول على إمكانية اللافتكس.
2. تشغيل نموذج ChatGPT + نموذج ChatGLM2 + نموذج MOSS + نموذج LLAMA2 + تون يي تشين ون (QiChaYiWen) (يتطلب معرفة بتشغيل نيفيديا دوكر (Nvidia Docker))
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# قم بتعديل ملف docker-compose.yml للحفاظ على الخطة رقم 2 وحذف الخطط الأخرى. ثم أشغل:
docker-compose up
```
### طريقة التثبيت الثالثة: طرائق نشر أخرى
1. **نصوص بنقرة واحدة لأنظمة Windows**.
يمكن لمستخدمي Windows الذين لا يعرفون بيئة Python تنزيل سكربت التشغيل بنقرة واحدة من [الإصدارات](https://github.com/binary-husky/gpt_academic/releases) المنشورة لتثبيت الإصدار الذي لا يحتوي على نماذج محلية.
المساهمة في السكربت تعود لـ[oobabooga](https://github.com/oobabooga/one-click-installers).
2. استخدام واجهة برمجة تطبيقات (API) مطراف ثالثة، Microsoft Azure، ونشوة النص، وغيرها، يرجى الرجوع إلى [صفحة الويكي](https://github.com/binary-husky/gpt_academic/wiki/إعدادات-التكوين-للمشروع) الخاصة بنا
3. دليل تجنب المشاكل عند نشر المشروع في خوادم السحابة.
يرجى زيارة صفحة [دليل نشر خوادم السحابة في المحيط](https://github.com/binary-husky/gpt_academic/wiki/دليل-نشر-خوادم-السحابة)
4. طرائق نشر المشروع بأحدث الأساليب
- استخدام Sealos للنشر السريع [بنقرة واحدة](https://github.com/binary-husky/gpt_academic/issues/993).
- استخدم WSL2 (Windows Subsystem for Linux). يُرجى زيارة صفحة الويكي [لدليل التثبيت-2](https://github.com/binary-husky/gpt_academic/wiki/دليل-تشغيل-WSL2-(Windows-Subsystem-for-Linux)
- كيفية تشغيل البرنامج تحت عنوان فرعي (على سبيل المثال: `http://localhost/subpath`). يُرجى زيارة [إرشادات FastAPI](docs/WithFastapi.md)
# الاستخدام المتقدم
### I: إنشاء أزرار مخصصة (اختصارات أكاديمية)
افتح أي محرر نصوص وافتح `core_functional.py` وأضف الإدخالات التالية ثم أعد تشغيل البرنامج. (إذا كانت الأزرار موجودة بالفعل، بإمكانك تعديل البادئة واللاحقة حراريًا دون الحاجة لإعادة تشغيل البرنامج)
على سبيل المثال:
```
"ترجمة سوبر الإنجليزية إلى العربية": {
# البادئة، ستتم إضافتها قبل إدخالاتك. مثلاً، لوصف ما تريده مثل ترجمة أو شرح كود أو تلوين وهلم جرا
"بادئة": "يرجى ترجمة النص التالي إلى العربية ثم استخدم جدول Markdown لشرح المصطلحات المختصة المذكورة في النص:\n\n",
# اللاحقة، سيتم إضافتها بعد إدخالاتك. يمكن استخدامها لوضع علامات اقتباس حول إدخالك.
"لاحقة": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II: إنشاء مكونات وظيفية مخصصة
قم بكتابة مكونات وظيفية قوية لتنفيذ أي مهمة ترغب في الحصول عليها وحتى تلك التي لم تخطر لك على بال.
إن إنشاء وتصحيح المكونات في هذا المشروع سهل للغاية، فما عليك سوى أن تمتلك بعض المعرفة الأساسية في لغة البرمجة بايثون وتستند على القالب الذي نقدمه.
للمزيد من التفاصيل، يُرجى الاطلاع على [دليل المكونات الوظيفية](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
# التحديثات
### I: تحديثات
1. ميزة حفظ الدردشة: يمكن حفظ الدردشة الحالية كملف HTML قابل للقراءة والاسترداد ببساطة عند استدعاء الوظيفة في منطقة المكونات `حفظ الدردشة الحالية` ، ويمكن استرجاع المحادثة السابقة ببساطة عند استدعاء الوظيفة في منطقة المكونات (القائمة المنسدلة) `تحميل سجل الدردشة` .
نصيحة: يمكنك النقر المباشر على `تحميل سجل الدردشة` بدون تحديد ملف لعرض ذاكرة التخزين المؤقت لسجلات HTML.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ميزة ترجمة المقالات العلمية بواسطة Latex/Arxiv
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. محطة فراغ (فهم نغمة المستخدم من داخل اللغة الطبيعية واستدعاء وظائف أخرى تلقائيًا)
- الخطوة 1: اكتب "بالرجاء استدعاء وظيفة ترجمة المقالة الأكاديمية من PDF وعنوان المقال هو https://openreview.net/pdf?id=rJl0r3R9KX".
- الخطوة 2: انقر فوق "محطة الفراغ".
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. تصميم الوظائف المتعددة القادرة على توفير وظائف قوية بواجهات بسيطة
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. ترجمة وإلغاء ترجمة المشاريع الأخرى مفتوحة المصدر
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. ميزة تزيين [live2d](https://github.com/fghrsh/live2d_demo) (مغلقة بشكل افتراضي، يتطلب تعديل `config.py`)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. إنتاج الصور من OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. تحليل وإجماع الصوت من OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. إصلاح أخطاء اللغة الطبيعة في Latex
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. تغيير اللغة والموضوع
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II: الإصدارات:
- الإصدار 3.70 (قريبًا): تحسينات لوظائف AutoGen وتصميم سلسلة من المكونات المشتقة
- الإصدار 3.60: إدخال AutoGen كأساس لوظائف الجيل الجديد
- الإصدار 3.57: دعم GLM3، نار النجوم v3، وشجرة الكلمات v4، وإصلاح خطأ الازدحام في النماذج المحلية
- الإصدار 3.56: الدعم لإضافة مزامنة الأزرار الأساسية حسب الطلب، وصفحة تجميع تقارير البيانات في ملف PDF
- الإصدار 3.55: إعادة هيكلة واجهة المستخدم الأمامية، وإضافة نافذة عائمة وشريط قائمة
- الإصدار 3.54: إضافة مترجم الكود المباشر (Code Interpreter) (قيد الانجاز)
- الإصدار 3.53: دعم اختيار موضوعات واجهة مختلفة، وزيادة الاستقرار وحل مشاكل التعارض بين المستخدمين المتعدد
- الإصدار 3.50: استخدام اللغة الطبيعية لاستدعاء جميع وظائف المشروع هذا (محطة فراغ)، ودعم تصنيف الوظائف وتحسين واجهة المستخدم وتصميم مواضيع جديدة
- الإصدار 3.49: دعم المنصات البحثية في بيدو كونفان وشجرة الكلمات
- الإصدار 3.48: دعم علي بابا, بوكما رش حتكيا, إكسونامبلومانت النار
- الإصدار 3.46: دعم محادثة نصية في الوقت الحقيقي غير مراقبة
- الإصدار 3.45: دعم تخصيص LatexChatglm النموذج التعديل
- الإصدار 3.44: دعم Azure رسميًا، وتحسين سهولة الاستخدام للواجهات الأمامية
- الإصدار 3.4: +ترجمة النصوص الكاملة للمقالات من خلال ملف PDF، +اختيار موضع المنطقة النصية، +خيار التخطيط الرأسي، +تحسينات في وظائف التداخل العديدة
- الإصدار 3.3: +وظائف متكاملة للمعلومات عبر الإنترنت
- الإصدار 3.2: دعم وظائف المكونات التي تحتوي معلمات أكثر (حفظ النص، فهم أي لغة برمجة، طلب أي تركيبة LLM في وقت واحد)
- الإصدار 3.1: دعم السؤال نحو نماذج GPT المتعددة! دعم واجهة api2d، دعم توازن الأحمال بين المفاتيح الخاصة المتعددة
- الإصدار 3.0: دعم لنماذج جات، واحدة منها لشتلس الصغيرة
- الإصدار 2.6: إعادة تصميم بنية الوظائف، وتحسين التفاعل وإضافة مزيد من الوظائف
- الإصدار 2.5: التحديث التلقائي، وحل مشكلة النص الطويل عند ملخص المشاريع الضخمة وتجاوز النصوص.
- الإصدار 2.4: (١) إضافة ميزة ترجمة المقالات الدورية. (٢) إضافة ميزة لتحويل مكان منطقة الإدخال. (٣) إضافة خيار التخطيط العمودي (vertical layout). (٤) تحسين وظائف المكونات متعددة الخيوط.
- الإصدار 2.3: تحسين التفاعل مع مواضيع متعددة
- الإصدار 2.2: دعم إعادة تحميل الوظائف المكونة حراريًا
- الإصدار 2.1: تصميم قابل للطي
- الإصدار 2.0: إدخال وحدات الوظائف المكونة
- الإصدار 1.0: الوظائف الأساسية
مجموعة المطورين GPT Academic QQ: `610599535`
- مشكلات معروفة
- بعض ملحقات متصفح الترجمة تتداخل مع تشغيل الواجهة الأمامية لهذا البرنامج
- يحتوي Gradio الرسمي حاليًا على عدد كبير من مشاكل التوافق. يُرجى استخدام `requirement.txt` لتثبيت Gradio.
### III: الأنساق
يمكن تغيير الأنساق بتعديل خيار `THEME` (config.py)
1. `Chuanhu-Small-and-Beautiful` [الرابط](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV: فروع تطوير هذا المشروع
1. الفرع `master`: الفرع الرئيسي، إصدار مستقر
2. الفرع `frontier`: الفرع التطويري، إصدار تجريبي
### V: المراجع والفروض التعليمية
```
استخدمت العديد من التصاميم الموجودة في مشاريع ممتازة أخرى في الأكواد التالية، للمراجع عشوائية:
# ViewGradio:
https://github.com/THUD
# مُثبّت بضغطة واحدة Oobabooga:
https://github.com/oobabooga/one-click-installers
# المزيد:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,357 +0,0 @@
> **Note**
>
> This README was translated by GPT (implemented by the plugin of this project) and may not be 100% reliable. Please carefully check the translation results.
>
> 2023.11.7: When installing dependencies, please select the **specified versions** in the `requirements.txt` file. Installation command: `pip install -r requirements.txt`.
# <div align=center><img src="logo.png" width="40"> GPT Academic Optimization</div>
**If you like this project, please give it a Star.**
To translate this project to arbitrary language with GPT, read and run [`multi_language.py`](multi_language.py) (experimental).
> **Note**
>
> 1.Please note that only plugins (buttons) highlighted in **bold** support reading files, and some plugins are located in the **dropdown menu** in the plugin area. Additionally, we welcome and process any new plugins with the **highest priority** through PRs.
>
> 2.The functionalities of each file in this project are described in detail in the [self-analysis report `self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告). As the version iterates, you can also click on the relevant function plugin at any time to call GPT to regenerate the project's self-analysis report. Common questions are in the [`wiki`](https://github.com/binary-husky/gpt_academic/wiki). [Regular installation method](#installation) | [One-click installation script](https://github.com/binary-husky/gpt_academic/releases) | [Configuration instructions](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
>
> 3.This project is compatible with and encourages the use of domestic large-scale language models such as ChatGLM. Multiple api-keys can be used together. You can fill in the configuration file with `API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"` to temporarily switch `API_KEY` during input, enter the temporary `API_KEY`, and then press enter to apply it.
<div align="center">
Feature (⭐ = Recently Added) | Description
--- | ---
⭐[Integrate New Models](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | Baidu [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu) and Wenxin Yiyu, [Tongyi Qianwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary), Shanghai AI-Lab [Shusheng](https://github.com/InternLM/InternLM), Xunfei [Xinghuo](https://xinghuo.xfyun.cn/), [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), Zhifu API, DALLE3
Proofreading, Translation, Code Explanation | One-click proofreading, translation, searching for grammar errors in papers, explaining code
[Custom Shortcuts](https://www.bilibili.com/video/BV14s4y1E7jN) | Support for custom shortcuts
Modular Design | Support for powerful [plugins](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), plugins support [hot updates](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Program Profiling](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin] One-click to profile Python/C/C++/Java/Lua/... project trees or [self-profiling](https://www.bilibili.com/video/BV1cj411A7VW)
Read Papers, [Translate](https://www.bilibili.com/video/BV1KT411x7Wn) Papers | [Plugin] One-click to interpret full-text latex/pdf papers and generate abstracts
Full-text Latex [Translation](https://www.bilibili.com/video/BV1nk4y1Y7Js/), [Proofreading](https://www.bilibili.com/video/BV1FT411H7c5/) | [Plugin] One-click translation or proofreading of latex papers
Batch Comment Generation | [Plugin] One-click batch generation of function comments
Markdown [Translation](https://www.bilibili.com/video/BV1yo4y157jV/) | [Plugin] Did you see the [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) in the top five languages?
Chat Analysis Report Generation | [Plugin] Automatically generates summary reports after running
[PDF Paper Full-text Translation](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plugin] Extract title & abstract of PDF papers + translate full-text (multi-threaded)
[Arxiv Helper](https://www.bilibili.com/video/BV1LM4y1279X) | [Plugin] Enter the arxiv article URL to translate the abstract + download PDF with one click
One-click Proofreading of Latex Papers | [Plugin] Syntax and spelling correction of Latex papers similar to Grammarly + output side-by-side PDF
[Google Scholar Integration Helper](https://www.bilibili.com/video/BV19L411U7ia) | [Plugin] Given any Google Scholar search page URL, let GPT help you [write related works](https://www.bilibili.com/video/BV1GP411U7Az/)
Internet Information Aggregation + GPT | [Plugin] One-click to let GPT retrieve information from the Internet to answer questions and keep the information up to date
⭐Arxiv Paper Fine Translation ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [Plugin] One-click [high-quality translation of arxiv papers](https://www.bilibili.com/video/BV1dz4y1v77A/), the best paper translation tool at present
⭐[Real-time Speech Input](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [Plugin] Asynchronously [listen to audio](https://www.bilibili.com/video/BV1AV4y187Uy/), automatically segment sentences, and automatically find the best time to answer
Formula/Image/Table Display | Can simultaneously display formulas in [TeX form and rendered form](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png), support formula and code highlighting
⭐AutoGen Multi-Agent Plugin | [Plugin] Explore the emergence of multi-agent intelligence with Microsoft AutoGen!
Start Dark [Theme](https://github.com/binary-husky/gpt_academic/issues/173) | Add ```/?__theme=dark``` to the end of the browser URL to switch to the dark theme
[More LLM Model Support](https://www.bilibili.com/video/BV1wT411p7yf) | It must be great to be served by GPT3.5, GPT4, [THU ChatGLM2](https://github.com/THUDM/ChatGLM2-6B), and [Fudan MOSS](https://github.com/OpenLMLab/MOSS) at the same time, right?
⭐ChatGLM2 Fine-tuning Model | Support for loading ChatGLM2 fine-tuning models and providing ChatGLM2 fine-tuning assistant plugins
More LLM Model Access, support for [huggingface deployment](https://huggingface.co/spaces/qingxu98/gpt-academic) | Join NewBing interface (New Bing), introduce Tsinghua [JittorLLMs](https://github.com/Jittor/JittorLLMs) to support [LLaMA](https://github.com/facebookresearch/llama) and [Pangu](https://openi.org.cn/pangu/)
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pip package | Use this project's all function plugins directly in Python without GUI (under development)
⭐Void Terminal Plugin | [Plugin] Schedule other plugins of this project directly in natural language
More New Feature Demonstrations (Image Generation, etc.)...... | See the end of this document ........
</div>
- New interface (modify the LAYOUT option in `config.py` to switch between "left-right layout" and "top-bottom layout")
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
- All buttons are dynamically generated by reading `functional.py` and can be added with custom functions to free up the clipboard
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Proofreading/Correction
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- If the output contains formulas, they will be displayed in both tex format and rendered format for easy copying and reading.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Too lazy to look at the project code? Show off the whole project directly in chatgpt's mouth
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Multiple large language models mixed calling (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# Installation
### Installation Method I: Run directly (Windows, Linux or MacOS)
1. Download the project
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure API_KEY
In `config.py`, configure API KEY and other settings, [click here to see special network environment configuration methods](https://github.com/binary-husky/gpt_academic/issues/1). [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
「 The program will first check if a secret configuration file named `config_private.py` exists and use the configurations from that file to override the ones in `config.py` with the same names. If you understand this logic, we strongly recommend that you create a new configuration file named `config_private.py` next to `config.py` and move (copy) the configurations from `config.py` to `config_private.py` (only copy the configuration items you have modified). 」
「 Project configuration can be done via `environment variables`. The format of the environment variables can be found in the `docker-compose.yml` file or our [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明). Configuration priority: `environment variables` > `config_private.py` > `config.py`. 」
3. Install dependencies
```sh
# (Option I: If you are familiar with python, python>=3.9) Note: Use the official pip source or the Aliyun pip source. Temporary method for switching the source: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: Using Anaconda) The steps are similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Create the anaconda environment
conda activate gptac_venv # Activate the anaconda environment
python -m pip install -r requirements.txt # This step is the same as the pip installation process
```
<details><summary>If you need to support THU ChatGLM2, Fudan MOSS, or RWKV Runner as backends, click here to expand</summary>
<p>
【Optional Step】If you need to support THU ChatGLM2 or Fudan MOSS as backends, you need to install additional dependencies (Prerequisites: Familiar with Python + Familiar with Pytorch + Sufficient computer configuration):
```sh
# 【Optional Step I】Support THU ChatGLM2. Note: If you encounter the "Call ChatGLM fail unable to load ChatGLM parameters" error, refer to the following: 1. The default installation above is for torch+cpu version. To use cuda, uninstall torch and reinstall torch+cuda; 2. If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py. Change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【Optional Step II】Support Fudan MOSS
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # When executing this line of code, make sure you are in the root directory of the project
# 【Optional Step III】Support RWKV Runner
Refer to wiki: https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# 【Optional Step IV】Make sure that the AVAIL_LLM_MODELS in the config.py configuration file includes the expected models. The currently supported models are as follows (jittorllms series currently only supports the docker solution):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run
```sh
python main.py
```
### Installation Method II: Use Docker
0. Deploy all capabilities of the project (this is a large image that includes cuda and latex. Not recommended if you have slow internet speed or small hard drive)
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# Modify docker-compose.yml, keep scheme 0 and delete other schemes. Then run:
docker-compose up
```
1. ChatGPT + Wenxin + Spark online models only (recommended for most people)
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
# Modify docker-compose.yml, keep scheme 1 and delete other schemes. Then run:
docker-compose up
```
P.S. If you need the latex plugin functionality, please see the Wiki. Also, you can directly use scheme 4 or scheme 0 to get the Latex functionality.
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + Intelligent Questions (requires familiarity with [Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian) runtime)
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# Modify docker-compose.yml, keep scheme 2 and delete other schemes. Then run:
docker-compose up
```
### Installation Method III: Other deployment methods
1. **Windows one-click running script**.
Windows users who are completely unfamiliar with the python environment can download the one-click running script from the [Release](https://github.com/binary-husky/gpt_academic/releases) to install the version without local models.
The script is contributed by [oobabooga](https://github.com/oobabooga/one-click-installers).
2. Use third-party APIs, Azure, Wenxin, Xinghuo, etc., see [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
3. Pitfall guide for deploying on cloud servers.
Please visit [Cloud Server Remote Deployment Wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
4. Some new deployment platforms or methods
- Use Sealos [to deploy with one click](https://github.com/binary-husky/gpt_academic/issues/993).
- Use WSL2 (Windows Subsystem for Linux). Please refer to [Deployment Wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- How to run under a subpath (such as `http://localhost/subpath`). Please visit [FastAPI Run Instructions](docs/WithFastapi.md)
# Advanced Usage
### I: Customizing new convenient buttons (academic shortcuts)
Open `core_functional.py` with any text editor, add the following entry, and then restart the program. (If the button already exists, both the prefix and suffix can be modified on-the-fly without restarting the program.)
For example:
```
"Super Translation": {
# Prefix: will be added before your input. For example, used to describe your request, such as translation, code explanation, proofreading, etc.
"Prefix": "Please translate the following paragraph into Chinese and then explain each proprietary term in the text using a markdown table:\n\n",
# Suffix: will be added after your input. For example, used to wrap your input in quotation marks along with the prefix.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II: Custom function plugins
Write powerful function plugins to perform any task you desire and can't imagine.
The difficulty of writing and debugging plugins in this project is very low. As long as you have a certain knowledge of Python, you can implement your own plugin functionality by following the template we provide.
For more details, please refer to the [Function Plugin Guide](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
# Updates
### I: Dynamics
1. Conversation-saving feature. Call `Save the current conversation` in the function plugin area to save the current conversation as a readable and restorable HTML file. Additionally, call `Load conversation history archive` in the function plugin area (drop-down menu) to restore previous sessions.
Tip: Clicking `Load conversation history archive` without specifying a file allows you to view the cached historical HTML archive.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ⭐Latex/Arxiv paper translation feature⭐
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. Void Terminal (understanding user intent from natural language input and automatically calling other plugins)
- Step 1: Enter " Please call the plugin to translate the PDF paper, the address is https://openreview.net/pdf?id=rJl0r3R9KX"
- Step 2: Click "Void Terminal"
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. Modular function design, simple interface supporting powerful functionality
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. Translate and interpret other open-source projects
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. Added small features that decorate [live2d](https://github.com/fghrsh/live2d_demo) (disabled by default, needs modification in `config.py`)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. OpenAI image generation
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. OpenAI audio parsing and summarization
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Latex full-text proofreading and correction
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. Language and theme switching
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II: Versions:
- version 3.70 (todo): Optimize the AutoGen plugin theme and design a series of derivative plugins
- version 3.60: Introduce AutoGen as the cornerstone of the new generation of plugins
- version 3.57: Support GLM3, Spark v3, Wenxin Quote v4, and fix concurrency bugs in local models
- version 3.56: Support dynamically adding basic functional buttons and a new summary PDF page
- version 3.55: Refactor the frontend interface and introduce floating windows and a menu bar
- version 3.54: Add a dynamic code interpreter (Code Interpreter) (to be improved)
- version 3.53: Support dynamically choosing different interface themes, improve stability, and resolve conflicts between multiple users
- version 3.50: Use natural language to call all function plugins of this project (Void Terminal), support plugin classification, improve UI, and design new themes
- version 3.49: Support Baidu Qianfan Platform and Wenxin Quote
- version 3.48: Support Ali Dharma Academy Tongyi Qianwen, Shanghai AI-Lab Shusheng, and Xunfei Spark
- version 3.46: Support fully hands-off real-time voice conversation
- version 3.45: Support customizing ChatGLM2 fine-tuned models
- version 3.44: Officially support Azure, optimize interface usability
- version 3.4: + Arxiv paper translation, latex paper correction functionality
- version 3.3: + Internet information integration functionality
- version 3.2: Function plugins support more parameter interfaces (conversation saving functionality, interpreting any code language + asking any combination of LLMs simultaneously)
- version 3.1: Support querying multiple GPT models simultaneously! Support API2D, support load balancing for multiple API keys
- version 3.0: Support chatglm and other small-scale LLMs
- version 2.6: Refactored plugin structure, improved interactivity, added more plugins
- version 2.5: Self-updating, fix the problem of text being too long and token overflowing when summarizing large code projects
- version 2.4: (1) Add PDF full-text translation functionality; (2) Add functionality to switch the position of the input area; (3) Add vertical layout option; (4) Optimize multi-threaded function plugins.
- version 2.3: Enhance multi-threaded interactivity
- version 2.2: Function plugin hot-reloading support
- version 2.1: Collapsible layout
- version 2.0: Introduce modular function plugins
- version 1.0: Basic functionality
GPT Academic Developer QQ Group: `610599535`
- Known Issues
- Some browser translation plugins interfere with the frontend operation of this software
- Official Gradio currently has many compatibility bugs, please make sure to install Gradio using `requirement.txt`
### III: Themes
You can change the theme by modifying the `THEME` option (config.py).
1. `Chuanhu-Small-and-Beautiful` [Website](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV: Development Branches of This Project
1. `master` branch: Main branch, stable version
2. `frontier` branch: Development branch, test version
***
### V: References and Learning
The code references the designs of many other excellent projects, in no particular order:
[THU ChatGLM2-6B](https://github.com/THUDM/ChatGLM2-6B)
[THU JittorLLMs](https://github.com/Jittor/JittorLLMs)
[ChatPaper](https://github.com/kaixindelele/ChatPaper)
[Edge-GPT](https://github.com/acheong08/EdgeGPT)
[ChuanhuChatGPT](https://github.com/GaiZhenbiao/ChuanhuChatGPT)
# Oobabooga one-click installer:
https://github.com/oobabooga/one-click-installers
# More:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,356 +0,0 @@
> **Remarque**
>
> Ce README a été traduit par GPT (implémenté par le plugin de ce projet) et n'est pas fiable à 100 %. Veuillez examiner attentivement les résultats de la traduction.
>
> 7 novembre 2023 : Lors de l'installation des dépendances, veuillez choisir les versions **spécifiées** dans le fichier `requirements.txt`. Commande d'installation : `pip install -r requirements.txt`.
# <div align=center><img src="logo.png" width="40"> Optimisation académique GPT (GPT Academic)</div>
**Si vous aimez ce projet, merci de lui donner une étoile ; si vous avez inventé des raccourcis ou des plugins utiles, n'hésitez pas à envoyer des demandes d'extraction !**
Si vous aimez ce projet, veuillez lui donner une étoile.
Pour traduire ce projet dans une langue arbitraire avec GPT, lisez et exécutez [`multi_language.py`](multi_language.py) (expérimental).
> **Remarque**
>
> 1. Veuillez noter que seuls les plugins (boutons) marqués en **surbrillance** prennent en charge la lecture de fichiers, et certains plugins se trouvent dans le **menu déroulant** de la zone des plugins. De plus, nous accueillons avec la plus haute priorité les nouvelles demandes d'extraction de plugins.
>
> 2. Les fonctionnalités de chaque fichier de ce projet sont spécifiées en détail dans [le rapport d'auto-analyse `self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic个项目自译解报告). Vous pouvez également cliquer à tout moment sur les plugins de fonctions correspondants pour appeler GPT et générer un rapport d'auto-analyse du projet. Questions fréquemment posées [wiki](https://github.com/binary-husky/gpt_academic/wiki). [Méthode d'installation standard](#installation) | [Script d'installation en un clic](https://github.com/binary-husky/gpt_academic/releases) | [Instructions de configuration](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)..
>
> 3. Ce projet est compatible avec et recommande l'expérimentation de grands modèles de langage chinois tels que ChatGLM, etc. Prend en charge plusieurs clés API, vous pouvez les remplir dans le fichier de configuration comme `API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`. Pour changer temporairement la clé API, entrez la clé API temporaire dans la zone de saisie, puis appuyez sur Entrée pour soumettre et activer celle-ci.
<div align="center">
Fonctionnalités (⭐ = fonctionnalité récemment ajoutée) | Description
--- | ---
⭐[Modèles acquis](https://github.com/binary-husky/gpt_academic/wiki/如何切换模型) | Baidu [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu) et Wenxin Yiyuan, [Tongyi Qianwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary), Shanghai AI-Lab [Shusheng](https://github.com/InternLM/InternLM), Xunfei [Xinghuo](https://xinghuo.xfyun.cn/), [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), Zhifu API, DALLE3
Amélioration, traduction, explication du code | Correction, traduction, recherche d'erreurs de syntaxe dans les articles, explication du code
[Raccourcis personnalisés](https://www.bilibili.com/video/BV14s4y1E7jN) | Prise en charge de raccourcis personnalisés
Conception modulaire | Prise en charge de plugins puissants personnalisables, prise en charge de la [mise à jour à chaud](https://github.com/binary-husky/gpt_academic/wiki/函数插件指南) des plugins
[Analyse de programme](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin] Analyse en profondeur d'un arbre de projets Python/C/C++/Java/Lua/... d'un simple clic ou [auto-analyse](https://www.bilibili.com/video/BV1cj411A7VW)
Lecture d'articles, traduction d'articles | [Plugin] Lecture automatique des articles LaTeX/PDF et génération du résumé
Traduction complète de [LaTeX](https://www.bilibili.com/video/BV1nk4y1Y7Js/) ou amélioration de leur qualité | [Plugin] Traduction ou amélioration rapide des articles LaTeX
Génération de commentaires en masse | [Plugin] Génération facile de commentaires de fonctions
Traduction [chinois-anglais](https://www.bilibili.com/video/BV1yo4y157jV/) du Markdown | [Plugin] Avez-vous vu le [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) dans les cinq langues ci-dessus ?
Génération de rapports d'analyse du chat | [Plugin] Génération automatique d'un rapport récapitulatif après l'exécution du chat
[Fonction de traduction complète des articles PDF](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plugin] Extraction du titre et du résumé d'un article PDF, ainsi que traduction intégrale (multithreading)
Assistant Arxiv | [Plugin] Saisissez l'URL d'un article Arxiv pour traduire automatiquement le résumé et télécharger le PDF
Correction automatique d'articles LaTeX | [Plugin] Correction de la grammaire, de l'orthographe et comparaison avec le PDF correspondant, à la manière de Grammarly
Assistant Google Scholar | [Plugin] Donner l'URL d'une page de recherche Google Scholar pour obtenir de l'aide sur l'écriture des références
Agrégation d'informations sur Internet + GPT | [Plugin] Obtenez les informations de l'Internet pour répondre aux questions à l'aide de GPT, afin que les informations ne soient jamais obsolètes
⭐Traduction détaillée des articles Arxiv ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [Plugin] Traduction de haute qualité d'articles Arxiv en un clic, le meilleur outil de traduction d'articles à ce jour
⭐[Saisie orale en temps réel](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [Plugin] Écoute asynchrone de l'audio, découpage automatique et recherche automatique du meilleur moment pour répondre
Affichage des formules, images, tableaux | Affichage simultané de la forme [TeX et rendue](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png) des formules, prise en charge de la mise en évidence des formules et du code
⭐Plugin AutoGen multi-agents | [Plugin] Explorez les émergences intelligentes à plusieurs agents avec Microsoft AutoGen !
Activation du [thème sombre](https://github.com/binary-husky/gpt_academic/issues/173) | Ajouter ```/?__theme=dark``` à l'URL du navigateur pour basculer vers le thème sombre
Prise en charge de plusieurs modèles LLM | Expérimentez avec GPT 3.5, GPT4, [ChatGLM2 de Tsinghua](https://github.com/THUDM/ChatGLM2-6B), [MOSS de Fudan](https://github.com/OpenLMLab/MOSS) simultanément !
⭐Modèle ChatGLM2 fine-tuned | Chargez et utilisez un modèle fine-tuned de ChatGLM2, disponible avec un plugin d'assistance
Prise en charge de plus de modèles LLM, déploiement sur [Huggingface](https://huggingface.co/spaces/qingxu98/gpt-academic) | Ajout de l'interface de connaissance-API, support de [LLaMA](https://github.com/facebookresearch/llama) et [PanGuα](https://openi.org.cn/pangu/)
⭐Paquet pip [void-terminal](https://github.com/binary-husky/void-terminal) | Accédez à toutes les fonctions et plugins de ce projet directement depuis Python (en cours de développement)
⭐Plugin terminal du vide | [Plugin] Utilisez un langage naturel pour interagir avec les autres plugins du projet
Affichage de nouvelles fonctionnalités (génération d'images, etc.) …… | Voir à la fin de ce document ……
</div>
- Nouvelle interface (modifiez l'option LAYOUT dans `config.py` pour basculer entre la disposition "gauche-droite" et "haut-bas")
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
- Tous les boutons sont générés dynamiquement en lisant `functional.py`, vous pouvez donc ajouter de nouvelles fonctionnalités personnalisées et libérer le presse-papiers.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Retouche/correction
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- If the output contains formulas, they will be displayed in both tex and rendered forms for easy copying and reading.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Don't feel like looking at the project code? Just give it to ChatGPT to show off.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Multiple large language models are mixed and used together (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4).
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# Installation
### Method I: Run directly (Windows, Linux, or MacOS)
1. Download the project
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure API_KEY
In `config.py`, configure the API KEY and other settings. [Click here to see methods for special network environment configurations](https://github.com/binary-husky/gpt_academic/issues/1). [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
「 The program will first check if there is a confidential configuration file named `config_private.py`, and use the configurations in that file to override the corresponding configurations in `config.py`. If you understand this logic, we strongly recommend creating a new configuration file named `config_private.py` right next to `config.py`, and move (copy) the configurations from `config.py` to `config_private.py` (only copy the configurations that you have modified). 」
「 You can also configure the project using `environment variables`. The format of the environment variables can be found in the `docker-compose.yml` file or on our [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明). The priority of configuration reading is: `environment variables` > `config_private.py` > `config.py`. 」
3. Install dependencies
```sh
# (Option I: If you are familiar with Python, python>=3.9) Note: Use the official pip source or the Ali pip source. Temporary change of source method: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: Use Anaconda) The steps are similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Create an anaconda environment
conda activate gptac_venv # Activate the anaconda environment
python -m pip install -r requirements.txt # This step is the same as the pip installation step
```
<details><summary>If you need to support Tsinghua ChatGLM2/Fudan MOSS/RWKV as backends, click here to expand</summary>
<p>
[Optional Steps] If you need to support Tsinghua ChatGLM2/Fudan MOSS as backends, you need to install additional dependencies (Prerequisites: Familiar with Python + Have used PyTorch + Sufficient computer configuration):
```sh
# [Optional Step I] Support Tsinghua ChatGLM2. Comment on this note: If you encounter the error "Call ChatGLM generated an error and cannot load the parameters of ChatGLM", refer to the following: 1: The default installation is the torch+cpu version. To use cuda, you need to uninstall torch and reinstall torch+cuda; 2: If the model cannot be loaded due to insufficient computer configuration, you can modify the model precision in request_llm/bridge_chatglm.py. Change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).
python -m pip install -r request_llms/requirements_chatglm.txt
# [Optional Step II] Support Fudan MOSS
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note: You need to be at the root directory of the project when executing this line of code
# [Optional Step III] Support RWKV Runner
Refer to the wiki: https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# [Optional Step IV] Make sure that the AVAIL_LLM_MODELS in the config.py configuration file contains the expected models. The currently supported models are as follows (jittorllms series currently only support the docker solution):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run
```sh
python main.py
```
### Method II: Use Docker
0. Deploy all capabilities of the project (this is a large image that includes cuda and latex. But if you have a slow internet speed or a small hard drive, it is not recommended to use this)
``` sh
# Modify the docker-compose.yml file, keep scheme 0 and delete the other schemes. Then run:
docker-compose up
```
1. ChatGPT + Wenxin Yiyu + Spark and other online models (recommended for most people)
``` sh
# Modify the docker-compose.yml file, keep scheme 1 and delete the other schemes. Then run:
docker-compose up
```
NOTE: If you need Latex plugin functionality, please refer to the Wiki. Additionally, you can also use scheme 4 or scheme 0 directly to obtain Latex functionality.
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + Tongyi Qianwen (requires familiarity with [Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian) runtime)
``` sh
# Modify the docker-compose.yml file, keep scheme 2 and delete the other schemes. Then run:
docker-compose up
```
### Method III: Other deployment methods
1. **One-click run script for Windows**.
Windows users who are completely unfamiliar with the Python environment can download the one-click run script without local models from the [Release](https://github.com/binary-husky/gpt_academic/releases) section.
The script was contributed by [oobabooga](https://github.com/oobabooga/one-click-installers).
2. Use third-party APIs, Azure, Wenxin Yiyu, Xinghuo, etc., see the [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
3. Pitfall guide for deploying on cloud servers.
Please visit the [cloud server remote deployment wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97).
4. Some new deployment platforms or methods
- Use Sealos [one-click deployment](https://github.com/binary-husky/gpt_academic/issues/993).
- Use WSL2 (Windows Subsystem for Linux). Please visit the [deployment wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- How to run under a subpath (such as `http://localhost/subpath`). Please see [FastAPI running instructions](docs/WithFastapi.md)
# Utilisation avancée
### I: Personnalisation des nouveaux boutons d'accès rapide (raccourcis académiques)
Ouvrez `core_functional.py` avec n'importe quel éditeur de texte, ajoutez les entrées suivantes, puis redémarrez le programme. (Si le bouton existe déjà, le préfixe et le suffixe peuvent être modifiés à chaud sans redémarrer le programme).
Par exemple:
```
"Traduction avancée de l'anglais vers le français": {
# Préfixe, ajouté avant votre saisie. Par exemple, utilisez-le pour décrire votre demande, telle que la traduction, l'explication du code, l'amélioration, etc.
"Prefix": "Veuillez traduire le contenu suivant en français, puis expliquer chaque terme propre à la langue anglaise utilisé dans le texte à l'aide d'un tableau markdown : \n\n",
# Suffixe, ajouté après votre saisie. Par exemple, en utilisant le préfixe, vous pouvez entourer votre contenu par des guillemets.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II: Personnalisation des plugins de fonction
Écrivez de puissants plugins de fonction pour accomplir toutes les tâches que vous souhaitez ou ne pouvez pas imaginer.
Le développement et le débogage de ces plugins dans ce projet sont très faciles. Tant que vous avez des connaissances de base en python, vous pouvez implémenter vos propres fonctionnalités grâce à notre modèle fourni.
Veuillez consulter le [Guide des plugins de fonction](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) pour plus de détails.
# Mises à jour
### I: Dynamique
1. Fonction de sauvegarde de conversation. Appelez `Enregistrer la conversation en cours` dans la zone des plugins fonctionnels pour enregistrer la conversation en cours sous la forme d'un fichier HTML lisible et récupérable. En outre, appelez `Charger les archives de conversation` dans la zone des plugins fonctionnels (menu déroulant) pour restaurer les conversations précédentes.
Astuce: Si aucun fichier n'est spécifié, cliquez directement sur `Charger les archives de conversation` pour afficher le cache des archives HTML.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ⭐ Fonction de traduction des articles Latex/Arxiv ⭐
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. Terminal du néant (comprendre l'intention de l'utilisateur à partir de la saisie en langage naturel et appeler automatiquement d'autres plugins)
- Étape 1: Saisissez "Veuillez appeler le plugin de traduction pour le document PDF, l'URL est https://openreview.net/pdf?id=rJl0r3R9KX".
- Étape 2 : Cliquez sur "Terminal du néant".
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. Conception de fonctionnalités modulaires, une interface simple peut prendre en charge des fonctionnalités puissantes
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. Traduction et interprétation d'autres projets open-source
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. Fonctionnalités supplémentaires intégrant [live2d](https://github.com/fghrsh/live2d_demo) (désactivé par défaut, nécessite des modifications dans `config.py`)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Génération d'images par OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. Analyse et résumé audio par OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Vérification et correction orthographique complète du document en Latex
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. Changement de langue et de thème
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II: Versions:
- version 3.70(tâche à accomplir) : Optimisation de la fonction AutoGen et création d'une série de plugins dérivés
- version 3.60 : Introduction d'AutoGen comme base des nouveaux plugins
- version 3.57 : Prise en charge de GLM3, Starlight v3, Zen v4 et correction de l'incompatibilité des modèles locaux
- version 3.56 : Possibilité d'ajouter dynamiquement des boutons de fonction de base et nouvelle page de synthèse des PDF
- version 3.55: Refonte de l'interface utilisateur avec fenêtres flottantes et barre de menu
- version 3.54 : Nouvel interpréteur de code dynamique (Code Interpreter) (à améliorer)
- version 3.53 : Possibilité de choisir dynamiquement différents thèmes d'interface, amélioration de la stabilité et résolution des problèmes de conflit entre utilisateurs multiples
- version 3.50 : Utiliser le langage naturel pour appeler toutes les fonctions du projet (Terminal du néant), prise en charge de la classification des plugins, amélioration de l'interface utilisateur, conception de nouveaux thèmes
- version 3.49 : Prise en charge de Baidu Qianfan et Xiaomi-Wenyiyan
- version 3.48 : Prise en charge d'Ali-DA, Shanghai AI-Lab-Shusheng et Xunfei Xinghuo
- version 3.46 : Prise en charge de la conversation audio temps réel sans intervention
- version 3.45 : Prise en charge de la personnalisation du modèle ChatGLM2
- version 3.44 : Prise en charge officielle d'Azure, amélioration de l'utilisabilité de l'interface
- version 3.4 : +traduction complète des articles Arxiv, +correction des articles Latex
- version 3.3 : +fonction d'intégration d'informations Internet
- version 3.2 : Les plugins de fonction prennent en charge plus de paramètres (fonction d'enregistrement de conversation, débogage de code de n'importe quel langage + demandes d'LLM arbitraires)
- version 3.1 : Prise en charge de l'interrogation simultanée de plusieurs modèles gpt ! Prise en charge de l'API2D, répartition de charge entre plusieurs clés API
- version 3.0 : Prise en charge de chatglm et d'autres petits llm
- version 2.6 : Refonte de la structure des plugins, amélioration de l'interactivité, ajout de nouveaux plugins
- version 2.5 : Auto-mise à jour, résolution des problèmes de dépassement de longueur de texte et de jeton pendant la consolidation de grands projets de codes sources
- version 2.4 : (1) Nouvelle fonctionnalité de traduction complète des documents PDF ; (2) Nouvelle fonctionnalité de changement de position de la zone de saisie ; (3) Nouvelle option de disposition verticale ; (4) Optimisation des plugins de fonction multithreads.
- version 2.3 : Amélioration de l'interactivité multi-threads
- version 2.2 : Prise en charge du rechargement à chaud des plugins de fonction
- version 2.1 : Mise en page pliable
- version 2.0 : Introduction de plugins de fonction modulaires
- version 1.0: Fonctionnalités de base
Groupe QQ des développeurs de GPT Academic: `610599535`
- Problèmes connus
- Certains plugins de traduction de navigateurs peuvent nuire au fonctionnement de l'interface utilisateur de ce logiciel.
- Gradio officiel a actuellement de nombreux bugs de compatibilité. Veuillez utiliser `requirement.txt` pour installer Gradio.
### III: Thèmes
Vous pouvez modifier le thème en modifiant l'option `THEME` (config.py).
1. `Chuanhu-Small-and-Beautiful` [Lien](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV: Branches de développement de ce projet
1. Branche `master` : Branche principale, version stable
2. Branche `frontier` : Branche de développement, version de test
### V: Références et apprentissage
```
De nombreux designs de codes de projets exceptionnels ont été référencés dans le développement de ce projet, sans ordre spécifique :
# ChatGLM2-6B de l'Université Tsinghua:
https://github.com/THUDM/ChatGLM2-6B
# JittorLLMs de l'Université Tsinghua:
https://github.com/Jittor/JittorLLMs
# ChatPaper :
https://github.com/kaixindelele/ChatPaper
# Edge-GPT :
https://github.com/acheong08/EdgeGPT
# ChuanhuChatGPT :
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Oobabooga installeur en un clic :
https://github.com/oobabooga/one-click-installers
# Plus
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,363 +0,0 @@
> **Hinweis**
>
> Dieses README wurde mithilfe der GPT-Übersetzung (durch das Plugin dieses Projekts) erstellt und ist nicht zu 100 % zuverlässig. Bitte überprüfen Sie die Übersetzungsergebnisse sorgfältig.
>
> 7. November 2023: Beim Installieren der Abhängigkeiten bitte nur die in der `requirements.txt` **angegebenen Versionen** auswählen. Installationsbefehl: `pip install -r requirements.txt`.
# <div align=center><img src="logo.png" width="40"> GPT Academic (GPT Akademisch)</div>
**Wenn Ihnen dieses Projekt gefällt, geben Sie ihm bitte einen Star. Wenn Sie praktische Tastenkombinationen oder Plugins entwickelt haben, sind Pull-Anfragen willkommen!**
Wenn Ihnen dieses Projekt gefällt, geben Sie ihm bitte einen Star.
Um dieses Projekt mit GPT in eine beliebige Sprache zu übersetzen, lesen Sie [`multi_language.py`](multi_language.py) (experimentell).
> **Hinweis**
>
> 1. Beachten Sie bitte, dass nur die mit **hervorgehobenen** Plugins (Schaltflächen) Dateien lesen können. Einige Plugins befinden sich im **Drop-down-Menü** des Plugin-Bereichs. Außerdem freuen wir uns über jede neue Plugin-PR mit **höchster Priorität**.
>
> 2. Die Funktionen jeder Datei in diesem Projekt sind im [Selbstanalysebericht `self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPT-Academic-Selbstanalysebericht) ausführlich erläutert. Sie können jederzeit auf die relevanten Funktions-Plugins klicken und GPT aufrufen, um den Selbstanalysebericht des Projekts neu zu generieren. Häufig gestellte Fragen finden Sie im [`Wiki`](https://github.com/binary-husky/gpt_academic/wiki). [Standardinstallationsmethode](#installation) | [Ein-Klick-Installationsskript](https://github.com/binary-husky/gpt_academic/releases) | [Konfigurationsanleitung](https://github.com/binary-husky/gpt_academic/wiki/Projekt-Konfigurationsanleitung).
>
> 3. Dieses Projekt ist kompatibel mit und unterstützt auch die Verwendung von inländischen Sprachmodellen wie ChatGLM. Die gleichzeitige Verwendung mehrerer API-Schlüssel ist möglich, indem Sie sie in der Konfigurationsdatei wie folgt angeben: `API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`. Wenn Sie den `API_KEY` vorübergehend ändern möchten, geben Sie vorübergehend den temporären `API_KEY` im Eingabebereich ein und drücken Sie die Eingabetaste, um die Änderung wirksam werden zu lassen.
<div align="center">
Funktionen (⭐= Kürzlich hinzugefügte Funktion) | Beschreibung
--- | ---
⭐[Neues Modell integrieren](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B)! | Baidu [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu) und Wenxin Yanyi, [Tongyi Qianwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary), Shanghai AI-Lab [Shusheng](https://github.com/InternLM/InternLM), Xunfei [Xinghuo](https://xinghuo.xfyun.cn/), [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), Cognitive Graph API, DALLE3
Verfeinern, Übersetzen, Codierung erläutern | Ein-Klick-Verfeinerung, Übersetzung, Suche nach grammatikalischen Fehlern in wissenschaftlichen Arbeiten, Erklärung von Code
[Eigene Tastenkombinationen](https://www.bilibili.com/video/BV14s4y1E7jN) definieren | Eigene Tastenkombinationen definieren
Modulare Gestaltung | Ermöglicht die Verwendung benutzerdefinierter leistungsstarker [Plugins](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), Plugins unterstützen [Hot-Reload](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Programmanalyse](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin] Ermöglicht die Erstellung einer Projekthierarchie für Python/C/C++/Java/Lua/... mit nur einem Klick oder [Selbstanalyse](https://www.bilibili.com/video/BV1cj411A7VW)
Lesen von Forschungsarbeiten, Übersetzen von Forschungsarbeiten | [Plugin] Ermöglicht eine Umwandlung des gesamten Latex-/PDF-Forschungspapiers mit nur einem Klick und generiert eine Zusammenfassung
Latex-Übersetzung des vollständigen Textes, Ausbesserung | [Plugin] Ermöglicht eine Übersetzung oder Verbesserung der Latex-Forschungsarbeit mit nur einem Klick
Erzeugen von Batch-Anmerkungen | [Plugin] Erzeugt Funktionserläuterungen in Stapeln
Markdown- [En-De-Übersetzung](https://www.bilibili.com/video/BV1yo4y157jV/) | [Plugin] Haben Sie die [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) in den oben genannten 5 Sprachen gesehen?
Erzeugen eines Chat-Analyseberichts | [Plugin] Generiert einen zusammenfassenden Bericht nach der Ausführung
PDF-Textübersetzungsmerkmal | [Plugin] Extrahiert Titel und Zusammenfassung des PDF-Dokuments und übersetzt den vollständigen Text (mehrfädig)
Arxiv-Assistent | [Plugin] Geben Sie die URL eines Arxiv-Artikels ein, um eine Zusammenfassung zu übersetzen und die PDF-Datei herunterzuladen
Automatische Überprüfung von Latex-Artikeln | [Plugin] Überprüft die Grammatik und Rechtschreibung von Latex-Artikeln nach dem Vorbild von Grammarly und generiert eine PDF-Vergleichsdatei
Google Scholar Integration Assistant | [Plugin] Geben Sie eine beliebige URL der Google Scholar-Suchseite ein und lassen Sie GPT Ihre [Verwandten Arbeiten](https://www.bilibili.com/video/BV1GP411U7Az/) schreiben
Internetinformationsaggregation + GPT | [Plugin] Ermöglicht es GPT, Fragen durch das Durchsuchen des Internets zu beantworten und Informationen immer auf dem neuesten Stand zu halten
⭐Feine Übersetzung von Arxiv-Artikeln ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [Plugin] Übersetzt Arxiv-Artikel [mit hoher Qualität](https://www.bilibili.com/video/BV1dz4y1v77A/) mit einem Klick - das beste Übersetzungstool für wissenschaftliche Artikel
⭐[Echtzeit-Spracheingabe](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [Plugin] [Asynchrones Lauschen auf Audio-Eingabe](https://www.bilibili.com/video/BV1AV4y187Uy/), automatisches Zerschneiden des Textes, automatische Suche nach dem richtigen Zeitpunkt zur Beantwortung
Darstellen von Formeln/Bildern/Tabellen | Zeigt Formeln sowohl in [TEX-](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png)- als auch in gerenderten Formen an, unterstützt Formeln und Code-Hervorhebung
⭐AutoGen Multi-Agent Plugin | [Plugin] Erforscht die Möglichkeiten des emergenten Verhaltens von Multi-Agent-Systemen mit Microsoft AutoGen!
Start im Dark-Theme | Um das Dark-Theme zu aktivieren, fügen Sie ```/?__theme=dark``` am Ende der URL im Browser hinzu
[Mehrsprachige LLM-Modelle](https://www.bilibili.com/video/BV1wT411p7yf) unterstützt | Es ist sicherlich beeindruckend, von GPT3.5, GPT4, [ChatGLM2 der Tsinghua University](https://github.com/THUDM/ChatGLM2-6B), [MOSS der Fudan University](https://github.com/OpenLMLab/MOSS) bedient zu werden, oder?
⭐ChatGLM2 Feinabstimmungsmodell | Unterstützt das Laden von ChatGLM2-Feinabstimmungsmodellen und bietet Unterstützung für ChatGLM2-Feinabstimmungsassistenten
Integration weiterer LLM-Modelle, Unterstützung von [Huggingface-Deployment](https://huggingface.co/spaces/qingxu98/gpt-academic) | Hinzufügen der Newbing-Schnittstelle (neues Bing), Einführung der [Jittorllms der Tsinghua University](https://github.com/Jittor/JittorLLMs) zur Unterstützung von LLaMA und PanGu Alpha
⭐[void-terminal](https://github.com/binary-husky/void-terminal) Pip-Paket | Verwenden Sie das Projekt in Python direkt, indem Sie das gesamte Funktionsplugin verwenden (in Entwicklung)
⭐Void-Terminal-Plugin | [Plugin] Verwenden Sie natürliche Sprache, um andere Funktionen dieses Projekts direkt zu steuern
Weitere Funktionen anzeigen (z. B. Bildgenerierung) …… | Siehe das Ende dieses Dokuments ……
</div>
- Neues Interface (Ändern Sie die LAYOUT-Option in der `config.py`, um zwischen "Links-Rechts-Layout" und "Oben-Unten-Layout" zu wechseln)
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
- Alle Schaltflächen werden dynamisch aus der `functional.py` generiert und ermöglichen das beliebige Hinzufügen benutzerdefinierter Funktionen zur Befreiung der Zwischenablage.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Überarbeiten/Korrigieren
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- If the output contains formulas, they will be displayed in both tex format and rendering format for easy copying and reading.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Don't want to look at the project code? Show off the whole project directly in chatgpt's mouth.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Multiple large language models mixed calling (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# Installation
### Installation Method I: Run directly (Windows, Linux or MacOS)
1. Download the project
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure API_KEY
In `config.py`, configure API KEY and other settings, [click to view special network environment configuration methods](https://github.com/binary-husky/gpt_academic/issues/1). [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/Project-Configuration-Instructions).
「 The program will first check if there is a confidential configuration file named `config_private.py` and use its configuration to override the configuration with the same name in `config.py`. If you understand this reading logic, we strongly recommend that you create a new configuration file named `config_private.py` next to `config.py` and move (copy) the configuration in `config.py` to `config_private.py` (only copy the configuration items that you have modified). 」
「 You can configure the project through `environment variables`. The format of environment variables can refer to the `docker-compose.yml` file or our [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/Project-Configuration-Instructions). The priority of configuration reading is: `environment variables` > `config_private.py` > `config.py`. 」
3. Install dependencies
```sh
# (Option I: if you are familiar with python, python>=3.9) Note: Use the official pip source or Ali pip source, temporary method to change the source: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: Using Anaconda) The steps are similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Create an anaconda environment
conda activate gptac_venv # Activate the anaconda environment
python -m pip install -r requirements.txt # This step is the same as installing with pip
```
<details><summary>If you need support for Tsinghua ChatGLM2/Fudan MOSS/RWKV as backend, please click to expand.</summary>
<p>
[Optional] If you need to support Tsinghua ChatGLM2/Fudan MOSS as the backend, you need to install additional dependencies (Prerequisites: Familiar with Python + Have used PyTorch + Strong computer configuration):
```sh
# [Optional Step I] Support Tsinghua ChatGLM2. Tsinghua ChatGLM note: If you encounter the error "Call ChatGLM fail cannot load ChatGLM parameters normally", refer to the following: 1: The default installation above is torch+cpu version. To use cuda, you need to uninstall torch and reinstall torch+cuda; 2: If you cannot load the model due to insufficient computer configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py. Change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# [Optional Step II] Support Fudan MOSS
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # When executing this line of code, you must be in the root path of the project
# [Optional Step III] Support RWKV Runner
Refer to the wiki: https://github.com/binary-husky/gpt_academic/wiki/Support-RWKV-Runner
# [Optional Step IV] Make sure the AVAIL_LLM_MODELS in config.py includes the expected models. The currently supported models are as follows (the jittorllms series only supports the docker solution at present):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run
```sh
python main.py
```
### Installation Method II: Use Docker
0. Deploy all capabilities of the project (this is a large image that includes cuda and latex. But if you have a slow internet speed or a small hard drive, it is not recommended to use this)
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# Modify docker-compose.yml, keep solution 0 and delete other solutions. Then run:
docker-compose up
```
1. ChatGPT + Wenxin's words + spark and other online models (recommended for most people)
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
# Modify docker-compose.yml, keep solution 1 and delete other solutions. Then run:
docker-compose up
```
P.S. If you need the Latex plugin functionality, please refer to the Wiki. Also, you can directly use solution 4 or 0 to get the Latex functionality.
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + Thousand Questions (Requires familiarity with [Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian) runtime)
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# Modify docker-compose.yml, keep solution 2 and delete other solutions. Then run:
docker-compose up
```
### Installation Method III: Other Deployment Methods
1. **Windows One-Click Script**.
Windows users who are completely unfamiliar with the python environment can download the one-click script for installation without local models in the published [Release](https://github.com/binary-husky/gpt_academic/releases).
The script is contributed by [oobabooga](https://github.com/oobabooga/one-click-installers).
2. Use third-party APIs, Azure, Wenxin's words, Spark, etc., see [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/Project-Configuration-Instructions)
3. Pit avoidance guide for cloud server remote deployment.
Please visit the [Cloud Server Remote Deployment Wiki](https://github.com/binary-husky/gpt_academic/wiki/Cloud-Server-Remote-Deployment-Guide)
4. Some new deployment platforms or methods
- Use Sealos [one-click deployment](https://github.com/binary-husky/gpt_academic/issues/993).
- Use WSL2 (Windows Subsystem for Linux). Please visit the [deployment wiki-2](https://github.com/binary-husky/gpt_academic/wiki/Deploy-on-Windows-Subsystem-for-Linux-WSL2)
- How to run under a subpath (such as `http://localhost/subpath`). Please visit [FastAPI Running Instructions](docs/WithFastapi.md)
# Fortgeschrittene Nutzung
### I: Benutzerdefinierte Tasten hinzufügen (akademische Hotkeys)
Öffnen Sie die Datei `core_functional.py` mit einem beliebigen Texteditor und fügen Sie folgenden Eintrag hinzu. Starten Sie dann das Programm neu. (Wenn die Schaltfläche bereits vorhanden ist, können sowohl das Präfix als auch das Suffix schnell geändert werden, ohne dass das Programm neu gestartet werden muss.)
Beispiel:
```
"Übersetzung von Englisch nach Chinesisch": {
# Präfix, wird vor Ihrer Eingabe hinzugefügt. Zum Beispiel, um Ihre Anforderungen zu beschreiben, z.B. Übersetzen, Code erklären, verbessern usw.
"Präfix": "Bitte übersetzen Sie den folgenden Abschnitt ins Chinesische und erklären Sie dann jedes Fachwort in einer Markdown-Tabelle:\n\n",
# Suffix, wird nach Ihrer Eingabe hinzugefügt. Zum Beispiel, um Ihre Eingabe in Anführungszeichen zu setzen.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II: Benutzerdefinierte Funktionsplugins
Schreiben Sie leistungsstarke Funktionsplugins, um beliebige Aufgaben zu erledigen, die Sie wünschen oder nicht erwartet haben.
Das Erstellen und Debuggen von Plugins in diesem Projekt ist einfach und erfordert nur Grundkenntnisse in Python. Sie können unser bereitgestelltes Template verwenden, um Ihre eigene Plugin-Funktion zu implementieren.
Weitere Informationen finden Sie in der [Plugin-Anleitung](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
# Aktualisierungen
### I: Neuigkeiten
1. Dialogspeicherungsfunktion. Rufen Sie im Funktionspluginbereich "Aktuellen Dialog speichern" auf, um den aktuellen Dialog als lesbare und wiederherstellbare HTML-Datei zu speichern.
Darüber hinaus können Sie im Funktionspluginbereich (Dropdown-Menü) "Dialoghistorie laden" aufrufen, um frühere Sitzungen wiederherzustellen.
Tipp: Wenn kein Dateiname angegeben ist, können Sie direkt auf "Dialoghistorie laden" klicken, um den Verlauf des HTML-Archivs anzuzeigen.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ⭐ Latex/Arxiv-Papierübersetzungsfunktion ⭐
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. Leere Terminaloberfläche (Verständnis der Benutzerabsicht und automatischer Aufruf anderer Plugins aus natürlicher Spracheingabe)
- Schritt 1: Geben Sie "Bitte Plugin aufrufen, um das PDF-Papier zu übersetzen, dessen Adresse https://openreview.net/pdf?id=rJl0r3R9KX ist" ein.
- Schritt 2: Klicken Sie auf "Leere Terminaloberfläche".
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. Modulare Funktionsgestaltung mit einfacher Schnittstelle für leistungsstarke Funktionen
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. Übersetzung und Lösung anderer Open-Source-Projekte
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. Funktionen zur Dekoration von [live2d](https://github.com/fghrsh/live2d_demo) (standardmäßig deaktiviert, config.py muss geändert werden)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-677397d7-abe6-4358-9bef-3c14a7041b59.png" width="500" >
</div>
7. OpenAI-Bildgenerierung
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. OpenAI-Audioanalyse und Zusammenfassung
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Latex-Volltextkorrektur
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. Sprach- und Themenwechsel
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II: Versionen:
- Version 3.70 (ausstehend): Optimierung des AutoGen-Plugin-Themas und Entwicklung einer Reihe von abgeleiteten Plugins
- Version 3.60: Einführung von AutoGen als Grundlage für neue Plugin-Generation
- Version 3.57: Unterstützung von GLM3, SparkV3, WenxinYiyanV4, Behebung von Problemen bei gleichzeitiger Verwendung von lokalen Modellen
- Version 3.56: Dynamische Hinzufügung von Basisfunktionsbuttons, neue Übersichtsseite für PDFs
- Version 3.55: Überarbeitung der Benutzeroberfläche, Hinzufügung von Schwebefenstern und Menüleiste
- Version 3.54: Neuer dynamischer Code interpretier (Code Interpreter) (unfertig)
- Version 3.53: Unterstützung für dynamische Auswahl verschiedener Oberflächenthemen, Verbesserung der Stabilität und Behebung von Mehrbenutzerkonflikten
- Version 3.50: Verwenden Sie natürliche Sprache, um alle Funktionen dieses Projekts aufzurufen (leeres Terminal), Unterstützung für Plugin-Kategorien, verbesserte Benutzeroberfläche, neue Themen
- Version 3.49: Unterstützung für Baidu Qianfan Platform und WenxinYiyan
- Version 3.48: Unterstützung für Alibaba Damo Academy Tongyi Qianwen, Shanghai AI-Lab Shusheng, Xunfei Spark
- Version 3.46: Vollständig automatisierter Echtzeit-Sprachdialog
- Version 3.45: Anpassbare ChatGLM2-Feinjustierung
- Version 3.44: Offizielle Unterstützung für Azure, Verbesserung der Benutzerfreundlichkeit der Benutzeroberfläche
- Version 3.4: Hinzufügen von Arxiv-Papierübersetzung, LaTeX-Papierkorrektur
- Version 3.3: Hinzufügen von Internet-Informationen
- Version 3.2: Funktionsplugins unterstützen weitere Parameter (Dialog speichern, beliebigen Code analysieren und nach beliebigen LLM-Kombinationen fragen)
- Version 3.1: Unterstützung für die gleichzeitige Abfrage mehrerer GPT-Modelle! Unterstützung für API-Schlüssel-Lastenausgleich
- Version 3.0: Unterstützung von ChatGLM und anderen kleinen LLMs
- Version 2.6: Neugestaltung der Plugin-Struktur, Verbesserung der Interaktivität, Hinzufügen weiterer Plugins
- Version 2.5: Auto-Update zur Lösung von Problemen mit zu langem Text oder Tokenüberschuss beim Zusammenfassen von Code
- Version 2.4: (1) Hinzufügen der Funktion zur Übersetzung des vollständigen PDF-Texts; (2) Neues Feature zum Wechseln der Position des Eingabebereichs; (3) Hinzufügen der Option für eine vertikale Ausrichtung; (4) Verbesserung der Multithreading-Funktionen von Plugins.
- Version 2.3: Verbesserte Multithreading-Interaktivität
- Version 2.2: Funktionsplugins können heiß neu geladen werden
- Version 2.1: Faltbare Layouts
- Version 2.0: Einführung modularer Funktionsplugins
- Version 1.0: Grundfunktionen
Entwickler-QQ-Gruppe von GPT Academic: `610599535`
- Bekannte Probleme
- Einige Browserübersetzungsplugins beeinflussen die Frontend-Ausführung dieser Software
- Die offizielle Version von Gradio hat derzeit viele Kompatibilitätsprobleme. Installieren Sie Gradio daher unbedingt über `requirement.txt`.
### III: Themen
Sie können das Theme ändern, indem Sie die Option `THEME` (config.py) ändern.
1. `Chuanhu-Small-and-Beautiful` [Link](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV: Entwicklungszweige dieses Projekts
1. `master` Branch: Hauptzweig, stabile Version
2. `frontier` Branch: Entwicklungsbranch, Testversion
### V: Referenzen und Lernen
```
Der Code basiert auf dem Design anderer herausragender Projekte. Die Reihenfolge ist beliebig:
# ChatGLM2-6B von Tsinghua:
https://github.com/THUDM/ChatGLM2-6B
# JittorLLMs von Tsinghua:
https://github.com/Jittor/JittorLLMs
# ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Edge-GPT:
https://github.com/acheong08/EdgeGPT
# ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Oobabooga One-Click-Installations:
https://github.com/oobabooga/one-click-installers
# Weitere:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,360 +0,0 @@
> **Nota**
>
> Questo README è stato tradotto da GPT (implementato da un plugin di questo progetto) e non è al 100% affidabile, per favore valuta attentamente i risultati della traduzione.
>
> 2023.11.7: Quando installi le dipendenze, seleziona le versioni **specificate** nel file `requirements.txt`. Comando di installazione: `pip install -r requirements.txt`.
# <div align=center><img src="logo.png" width="40"> GPT Ottimizzazione Accademica (GPT Academic)</div>
**Se ti piace questo progetto, per favore dagli una stella; se hai idee o plugin utili, fai una pull request!**
Se ti piace questo progetto, dagli una stella.
Per tradurre questo progetto in qualsiasi lingua con GPT, leggi ed esegui [`multi_language.py`](multi_language.py) (sperimentale).
> **Nota**
>
> 1. Fai attenzione che solo i plugin (pulsanti) **evidenziati** supportano la lettura dei file, alcuni plugin si trovano nel **menu a tendina** nell'area dei plugin. Inoltre, accogliamo e gestiamo con **massima priorità** qualsiasi nuovo plugin attraverso pull request.
>
> 2. Le funzioni di ogni file in questo progetto sono descritte in dettaglio nel [rapporto di traduzione automatica del progetto `self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告). Con l'iterazione della versione, puoi anche fare clic sui plugin delle funzioni rilevanti in qualsiasi momento per richiamare GPT e rigenerare il rapporto di auto-analisi del progetto. Domande frequenti [`wiki`](https://github.com/binary-husky/gpt_academic/wiki) | [Metodo di installazione standard](#installazione) | [Script di installazione one-click](https://github.com/binary-husky/gpt_academic/releases) | [Configurazione](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
>
> 3. Questo progetto è compatibile e incoraggia l'uso di modelli di linguaggio di grandi dimensioni nazionali, come ChatGLM. Supporto per la coesistenza di più chiavi API, puoi compilare nel file di configurazione come `API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`. Quando è necessario sostituire temporaneamente `API_KEY`, inserisci temporaneamente `API_KEY` nell'area di input e premi Invio per confermare.
<div align="center">
Funzionalità (⭐ = Nuove funzionalità recenti) | Descrizione
--- | ---
⭐[Integrazione di nuovi modelli](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | Baidu [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu) e [Wenxin](https://cloud.baidu.com/doc/GUIDE/5268.9) Intelligence, [Tongyi Qianwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary), Shanghai AI-Lab [bookbrain](https://github.com/InternLM/InternLM), Xunfei [Xinghuo](https://xinghuo.xfyun.cn/), [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), Zhipu API, DALLE3
Revisione, traduzione, spiegazione del codice | Revisione, traduzione, ricerca errori grammaticali nei documenti e spiegazione del codice con un clic
[Tasti di scelta rapida personalizzati](https://www.bilibili.com/video/BV14s4y1E7jN) | Supporta tasti di scelta rapida personalizzati
Design modulare | Supporto per plugin personalizzati potenti, i plugin supportano l'[aggiornamento in tempo reale](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Analisi del codice](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin] Un clic per analizzare alberi di progetti Python/C/C++/Java/Lua/... o [autoanalisi](https://www.bilibili.com/video/BV1cj411A7VW)
Lettura di documenti, traduzione di documenti | [Plugin] Un clic per interpretare documenti completi in latex/pdf e generare un riassunto
Traduzione completa di testi in Latex, revisione completa di testi in Latex | [Plugin] Un clic per tradurre o correggere documenti in latex
Generazione automatica di commenti in batch | [Plugin] Un clic per generare commenti di funzione in batch
Traduzione [cinese-inglese](https://www.bilibili.com/video/BV1yo4y157jV/) in Markdown | [Plugin] Hai visto sopra i README in 5 lingue diverse ([Inglese](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md))?
Generazione di rapporti di analisi chat | [Plugin] Genera automaticamente un rapporto di sintesi dopo l'esecuzione
Funzionalità di traduzione di testo completo in PDF | [Plugin] Estrai il titolo e il riassunto dei documenti PDF e traduci tutto il testo (multithreading)
Aiutante per Arxiv | [Plugin] Inserisci l'URL dell'articolo Arxiv per tradurre riassunto e scaricare PDF in un clic
Controllo completo dei documenti in Latex | [Plugin] Rileva errori grammaticali e ortografici nei documenti in Latex simile a Grammarly + Scarica un PDF per il confronto
Assistente per Google Scholar | [Plugin] Dato qualsiasi URL della pagina di ricerca di Google Scholar, fai scrivere da GPT gli *articoli correlati* per te
Concentrazione delle informazioni di Internet + GPT | [Plugin] [Recupera informazioni da Internet](https://www.bilibili.com/video/BV1om4y127ck) utilizzando GPT per rispondere alle domande e rendi le informazioni sempre aggiornate
⭐Traduzione accurata di articoli Arxiv ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [Plugin] [Traduci articoli Arxiv ad alta qualità](https://www.bilibili.com/video/BV1dz4y1v77A/) con un clic, lo strumento di traduzione degli articoli migliore al mondo al momento
⭐[Inserimento della conversazione vocale in tempo reale](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [Plugin] [Ascolta l'audio](https://www.bilibili.com/video/BV1AV4y187Uy/) in modo asincrono, taglia automaticamente le frasi e trova automaticamente il momento giusto per rispondere
Visualizzazione di formule, immagini, tabelle | Mostra contemporaneamente formule in formato tex e renderizzato, supporta formule e evidenziazione del codice
⭐Plugin multi-agente AutoGen | [Plugin] Esplora le possibilità dell'emergenza intelligence multi-agente con l'aiuto di Microsoft AutoGen!
Attiva il tema scuro [qui](https://github.com/binary-husky/gpt_academic/issues/173) | Aggiungi ```/?__theme=dark``` alla fine dell'URL del browser per passare al tema scuro
Supporto di più modelli LLM | Essere servito contemporaneamente da GPT3.5, GPT4, [ChatGLM2 di Tsinghua](https://github.com/THUDM/ChatGLM2-6B), [MOSS di Fudan](https://github.com/OpenLMLab/MOSS)
⭐Modello di fine-tuning ChatGLM2 | Supporto per l'importazione del modello di fine-tuning di ChatGLM2, fornendo plug-in di assistenza per il fine tuning di ChatGLM2
Più supporto per modelli LLM, supporto del [deploy di Huggingface](https://huggingface.co/spaces/qingxu98/gpt-academic) | Aggiungi interfaccia Newbing (Bing Translator), introduce il supporto di [JittorLLMs](https://github.com/Jittor/JittorLLMs) di Tsinghua, supporto per [LLaMA](https://github.com/facebookresearch/llama) e [Panguα](https://openi.org.cn/pangu/)
⭐Pacchetto pip [void-terminal](https://github.com/binary-husky/void-terminal) | Fornisce funzionalità di tutti i plugin di questo progetto direttamente in Python senza GUI (in sviluppo)
⭐Plugin terminale virtuale | [Plugin] Richiama altri plugin di questo progetto utilizzando linguaggio naturale
Altre nuove funzionalità (come la generazione di immagini) ... | Vedi alla fine di questo documento ...
</div>
- Nuovo layout (modifica l'opzione LAYOUT in `config.py` per passare tra "layout sinistra / destra" e "layout sopra / sotto")
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
- Tutti i pulsanti vengono generati dinamicamente leggendo `functional.py`, puoi aggiungere liberamente funzionalità personalizzate, liberando la clipboard
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Revisione / correzione
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- Se l'output contiene formule, saranno visualizzate sia in formato tex che in formato renderizzato per facilitarne la copia e la lettura.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Non hai voglia di guardare il codice del progetto? Mostralo direttamente al chatgpt in bocca.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Chiamate miste di modelli di grandi dimensioni (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# Installazione
### Metodo di installazione I: Esegui direttamente (Windows, Linux o MacOS)
1. Scarica il progetto
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configura l'API_KEY
Nel file `config.py`, configura l'API KEY e altre impostazioni, [clicca qui per vedere come configurare l'API in ambienti di rete speciali](https://github.com/binary-husky/gpt_academic/issues/1) . [Pagina Wiki](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
「 Il programma controllerà prima se esiste un file di configurazione privata chiamato `config_private.py` e utilizzerà le configurazioni in esso contenute per sovrascrivere le configurazioni con lo stesso nome in `config.py`. Se comprendi questa logica di lettura, ti consigliamo vivamente di creare un nuovo file di configurazione chiamato `config_private.py` accanto a `config.py` e spostare (copiare) le configurazioni da `config.py` a `config_private.py` (basta copiare le voci di configurazione che hai modificato). 」
「 Supporta la configurazione del progetto tramite `variabili d'ambiente`, il formato di scrittura delle variabili d'ambiente è descritto nel file `docker-compose.yml` o nella nostra [pagina Wiki](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明) priorità di lettura della configurazione: `variabili d'ambiente` > `config_private.py` > `config.py`. 」
3. Installa le dipendenze
```sh
# (Scelta I: Se familiarizzato con python, python>=3.9) Nota: Usa il repository delle fonti ufficiale di pip o Ali pip per temporaneamente cambiare la fonte: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Scelta II: Usa Anaconda) Anche in questo caso, i passaggi sono simili (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Crea l'ambiente anaconda
conda activate gptac_venv # Attiva l'ambiente anaconda
python -m pip install -r requirements.txt # Questo passaggio è identico alla procedura di installazione con pip
```
<details><summary>Se desideri utilizzare il backend di ChatGLM2 di Tsinghua/Fudan MOSS/RWKV, fai clic per espandere</summary>
<p>
[Optional] Se desideri utilizzare ChatGLM2 di Tsinghua/Fudan MOSS come backend, è necessario installare ulteriori dipendenze (Requisiti: conoscenza di Python + esperienza con Pytorch + hardware potente):
```sh
# [Optional Step I] Supporto per ChatGLM2 di Tsinghua. Note di ChatGLM di Tsinghua: Se si verifica l'errore "Call ChatGLM fail non può caricare i parametri di ChatGLM", fare riferimento a quanto segue: 1: L'installazione predefinita è la versione torch+cpu, per usare cuda è necessario disinstallare torch ed installare nuovamente la versione con torch+cuda; 2: Se il modello non può essere caricato a causa di una configurazione insufficiente, è possibile modificare la precisione del modello in request_llm/bridge_chatglm.py, sostituendo AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) con AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# [Optional Step II] Supporto per Fudan MOSS
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # Attenzione: eseguire questo comando nella directory principale del progetto
# [Optional Step III] Supporto per RWKV Runner
Consulta il Wiki: https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# [Optional Step IV] Assicurati che il file di configurazione config.py includa i modelli desiderati. Di seguito sono elencati i modelli attualmente supportati (gli llm di jittorllms supportano solo la soluzione Docker):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Esegui
```sh
python main.py
```
### Metodo di installazione II: Utilizzo di Docker
0. Installa tutte le funzionalità del progetto (Questo è un'immagine di grandi dimensioni che include cuda e latex. Potrebbe non essere adatta se hai una connessione lenta o uno spazio su disco limitato)
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# Modifica il file docker-compose.yml: mantieni solo la configurazione 0 e rimuovi le altre configurazioni. Avvia il seguente comando:
docker-compose up
```
1. ChatGPT + Wenxin Yiyu (Poem) + Spark, solo modelli online (Consigliato per la maggior parte delle persone)
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
# Modifica il file docker-compose.yml: mantieni solo la configurazione 1 e rimuovi le altre configurazioni. Avvia il seguente comando:
docker-compose up
```
P.S. Se hai bisogno del plugin LaTeX, consulta la pagina Wiki. In alternativa, puoi utilizzare le configurazioni 4 o 0 direttamente per ottenere questa funzionalità.
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + Tongyi Q&W (Richiede conoscenze su Nvidia Docker)
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# Modifica il file docker-compose.yml: mantieni solo la configurazione 2 e rimuovi le altre configurazioni. Avvia il seguente comando:
docker-compose up
```
### Metodo di installazione III: Altre opzioni di distribuzione
1. **Script di esecuzione con un clic per Windows**.
Se non conosci affatto l'ambiente python in Windows, puoi scaricare uno script di esecuzione con un clic dalla sezione [Release](https://github.com/binary-husky/gpt_academic/releases) per installare la versione che non richiede modelli locali.
Lo script è stato fornito da [oobabooga](https://github.com/oobabooga/one-click-installers).
2. Utilizzo di API di terze parti, Azure, Wenxin Yiyu (Poem), Xinghuo, ecc. vedi [pagina Wiki](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)
3. Guida all'installazione del server cloud remoto.
Visita la [pagina Wiki sull'installazione del server cloud remoto](https://github.com/binary-husky/gpt_academic/wiki/云服务器远程部署指南).
4. Altre nuove piattaforme o metodi di distribuzione:
- Uso di Sealos per il [deployment con un clic](https://github.com/binary-husky/gpt_academic/issues/993).
- Uso di WSL2 (Windows Subsystem for Linux). Vedi [Guida all'installazione](https://github.com/binary-husky/gpt_academic/wiki/使用WSL2Windows-Subsystem-for-Linux-子系统)部署) per maggiori informazioni.
- Funzionamento su un sotto-percorso URL (`http://localhost/subpath`). Vedi [istruzioni FastAPI](docs/WithFastapi.md) per maggiori dettagli.
# Utilizzo avanzato
### I: Personalizzare nuovi pulsanti rapidi (tasti di scelta rapida accademici)
Apri `core_functional.py` con qualsiasi editor di testo e aggiungi le seguenti voci, quindi riavvia il programma. (Se il pulsante esiste già, sia il prefisso che il suffisso possono essere modificati a caldo senza la necessità di riavviare il programma.)
Ad esempio,
```
"Traduzione avanzata Cinese-Inglese": {
# Prefisso, sarà aggiunto prima del tuo input. Ad esempio, utilizzato per descrivere la tua richiesta, come traduzione, spiegazione del codice, rifinitura, ecc.
"Prefisso": "Si prega di tradurre il seguente testo in cinese e fornire spiegazione per i termini tecnici utilizzati, utilizzando una tabella in markdown uno per uno:\n\n",
# Suffisso, sarà aggiunto dopo il tuo input. Ad esempio, in combinazione con il prefisso, puoi circondare il tuo input con virgolette.
"Suffisso": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II: Plugin di funzioni personalizzate
Scrivi potentissimi plugin di funzioni per eseguire qualsiasi compito che desideri, sia che tu lo pensi o meno.
La scrittura di plugin per questo progetto è facile e richiede solo conoscenze di base di Python. Puoi seguire il [Guida ai Plugin di Funzione](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) per maggiori dettagli.
# Aggiornamenti
### I: Aggiornamenti
1. Funzionalità di salvataggio della conversazione. Chiamare `Salva la conversazione corrente` nell'area del plugin per salvare la conversazione corrente come un file html leggibile e ripristinabile.
Inoltre, nella stessa area del plugin (menu a tendina) chiamare `Carica la cronologia della conversazione` per ripristinare una conversazione precedente.
Suggerimento: fare clic su `Carica la cronologia della conversazione` senza specificare un file per visualizzare la tua cronologia di archiviazione HTML.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ⭐ Funzionalità di traduzione articoli Latex/Arxiv ⭐
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. Terminale vuoto (Comprensione dell'intento dell'utente dai testi liberi + Chiamata automatica di altri plugin)
- Passaggio 1: Digitare "Chiamare il plugin per tradurre un documento PDF, l'indirizzo è https://openreview.net/pdf?id=rJl0r3R9KX"
- Passaggio 2: Fare clic su "Terminale vuoto"
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. Design modulare, interfacce semplici che supportano funzionalità potenti
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. Traduzione e interpretazione di altri progetti open source
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. Funzionalità leggera per [live2d](https://github.com/fghrsh/live2d_demo) (disabilitata per impostazione predefinita, richiede modifica di `config.py`)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Generazione di immagini di OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. Elaborazione e riepilogo audio di OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Correzione totale del testo di Latex
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. Cambio linguaggio e tema
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II: Versioni:
- versione 3.70 (todo): Ottimizzazione della visualizzazione del tema AutoGen e sviluppo di una serie di plugin correlati.
- versione 3.60: Introduzione di AutoGen come fondamento per i plugin della nuova generazione.
- versione 3.57: Supporto per GLM3, StarFirev3, Wenxin-yiyanv4 e correzione di bug sulla concorrenza dell'uso di modelli locali.
- versione 3.56: Possibilità di aggiungere dinamicamente pulsanti per funzionalità di base e nuova pagina di riepilogo del PDF.
- versione 3.55: Ristrutturazione dell'interfaccia utente, introduzione di finestre fluttuanti e barre dei menu.
- versione 3.54: Nuovo interprete di codice dinamico (Code Interpreter) (da perfezionare).
- versione 3.53: Possibilità di selezionare dinamicamente diversi temi dell'interfaccia utente, miglioramento della stabilità e risoluzione dei conflitti tra utenti multipli.
- versione 3.50: Utilizzo del linguaggio naturale per chiamare tutte le funzioni dei plugin di questo progetto (Terminale vuoto), supporto per la classificazione dei plugin, miglioramento dell'interfaccia utente e design di nuovi temi.
- versione 3.49: Supporto per la piattaforma Baidu Qianfan e Wenxin-yiyan.
- versione 3.48: Supporto per Alibaba DAXI 所见即所答, Shanghai AI-Lab Shusheng, Xunfei StarFire.
- versione 3.46: Supporto per la chat vocale in tempo reale completamente automatica.
- versione 3.45: Supporto personalizzato per il micro-aggiustamento del modello ChatGLM2.
- versione 3.44: Supporto ufficiale per Azure, miglioramento dell'usabilità dell'interfaccia.
- versione 3.4: + Funzionalità di traduzione di documenti arXiv e correzione di documenti LaTeX.
- versione 3.3: + Funzionalità di sintesi delle informazioni su Internet.
- versione 3.2: Il plugin di funzione supporta più interfacce dei parametri (funzionalità di salvataggio della conversazione, interpretazione di codici in qualsiasi linguaggio contemporaneamente, interrogare qualsiasi combinazione di LLM).
- versione 3.1: Supporto per l'interrogazione simultanea di più modelli GPT! Supporto per api2d, equilibrio del carico con più apikey.
- versione 3.0: Supporto per chatglm e altri piccoli llm.
- versione 2.6: Rielaborazione della struttura del plugin, miglioramento dell'interattività, aggiunta di ulteriori plugin.
- versione 2.5: Aggiornamento automatico, risoluzione del problema della lunghezza eccessiva del testo durante il riepilogo di grandi blocchi di codice che supera i token.
- versione 2.4: (1) Nuova funzionalità di traduzione di documenti PDF; (2) Nuova funzionalità di scambio delle posizioni tra l'area di input (input area); (3) Nuova opzione di layout verticale; (4) Ottimizzazione del plugin a threading multiplo.
- versione 2.3: Miglioramento dell'interattività con threading multiplo.
- versione 2.2: Supporto per il plugin con ricarica a caldo.
- versione 2.1: Layout pieghevole.
- versione 2.0: Introduzione di plugin modulari.
- versione 1.0: Funzioni di base
GPT Academic Developer QQ Group: `610599535`
- Problemi noti
- Alcuni plug-in di traduzione del browser possono interferire con il funzionamento del frontend di questo software
- L'app Gradio ufficiale ha molti bug di compatibilità, si consiglia di installare Gradio tramite `requirement.txt`
### III: Temi
Il tema può essere modificato modificando l'opzione `THEME` (config.py)
1. `Chuanhu-Small-and-Beautiful` [Website](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV: Branch di Sviluppo di questo progetto
1. `master` branch: branch principale, versione stabile
2. `frontier` branch: branch di sviluppo, versione di test
### V: Riferimenti e Risorse di Apprendimento
```
Nel codice sono state utilizzate diverse idee dagli altri progetti, senza un ordine specifico:
# ChatGLM2-6B di Tsinghua:
https://github.com/THUDM/ChatGLM2-6B
# JittorLLMs di Tsinghua:
https://github.com/Jittor/JittorLLMs
# ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Edge-GPT:
https://github.com/acheong08/EdgeGPT
# ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Installazione con un solo clic di Oobabooga:
https://github.com/oobabooga/one-click-installers
# Altre risorse:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,344 +0,0 @@
> **注意**
>
> 此READMEはGPTによる翻訳で生成されましたこのプロジェクトのプラグインによって実装されています、翻訳結果は100%正確ではないため、注意してください。
>
> 2023年11月7日: 依存関係をインストールする際は、`requirements.txt`で**指定されたバージョン**を選択してください。 インストールコマンド: `pip install -r requirements.txt`。
# <div align=center><img src="logo.png" width="40"> GPT 学術最適化 (GPT Academic)</div>
**このプロジェクトが気に入った場合は、Starを付けてください。また、便利なショートカットキーまたはプラグインを作成した場合は、プルリクエストを歓迎します**
GPTを使用してこのプロジェクトを任意の言語に翻訳するには、[`multi_language.py`](multi_language.py)を読み込んで実行します(実験的な機能)。
> **注意**
>
> 1. **強調された** プラグインボタンのみがファイルを読み込むことができることに注意してください。一部のプラグインは、プラグインエリアのドロップダウンメニューにあります。また、新しいプラグインのPRを歓迎し、最優先で対応します。
>
> 2. このプロジェクトの各ファイルの機能は、[自己分析レポート`self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic%E9%A1%B9%E7%9B%AE%E8%87%AA%E8%AF%91%E8%A7%A3%E5%A0%82)で詳しく説明されています。バージョンが進化するにつれて、関連する関数プラグインをクリックして、プロジェクトの自己分析レポートをGPTで再生成することもできます。よくある質問については、[`wiki`](https://github.com/binary-husky/gpt_academic/wiki)をご覧ください。[標準的なインストール方法](#installation) | [ワンクリックインストールスクリプト](https://github.com/binary-husky/gpt_academic/releases) | [構成の説明](https://github.com/binary-husky/gpt_academic/wiki/Project-Configuration-Explain)。
>
> 3. このプロジェクトは、[ChatGLM](https://www.chatglm.dev/)などの中国製の大規模言語モデルも互換性があり、試してみることを推奨しています。複数のAPIキーを共存させることができ、設定ファイルに`API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`のように記入できます。`API_KEY`を一時的に変更する必要がある場合は、入力エリアに一時的な`API_KEY`を入力し、Enterキーを押して提出すると有効になります。
<div align="center">
機能(⭐= 最近追加された機能) | 説明
--- | ---
⭐[新しいモデルの追加](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | Baidu [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)とWenxin Yiyu, [Tongyi Qianwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary), Shanghai AI-Lab [Shusheng](https://github.com/InternLM/InternLM), Xunfei [Xinghuo](https://xinghuo.xfyun.cn/), [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), Zhantu API, DALLE3
校正、翻訳、コード解説 | 一括校正、翻訳、論文の文法エラーの検索、コードの解説
[カスタムショートカットキー](https://www.bilibili.com/video/BV14s4y1E7jN) | カスタムショートカットキーのサポート
モジュール化された設計 | カスタムでパワフルな[プラグイン](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions)のサポート、プラグインの[ホットリロード](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[プログラム解析](https://www.bilibili.com/video/BV1cj411A7VW) | [プラグイン] Python/C/C++/Java/Lua/...のプロジェクトツリーを簡単に解析するか、[自己解析](https://www.bilibili.com/video/BV1cj411A7VW)
論文の読み込み、[翻訳](https://www.bilibili.com/video/BV1KT411x7Wn) | [プラグイン] LaTeX/PDFの論文全文を翻訳して要約を作成する
LaTeX全文の[翻訳](https://www.bilibili.com/video/BV1nk4y1Y7Js/)、[校正](https://www.bilibili.com/video/BV1FT411H7c5/) | [プラグイン] LaTeX論文を翻訳や校正する
一括コメント生成 | [プラグイン] 関数コメントを一括生成する
Markdownの[日英翻訳](https://www.bilibili.com/video/BV1yo4y157jV/) | [プラグイン] 5つの言語[英語](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)などのREADMEをご覧になりましたか?
チャット分析レポートの生成 | [プラグイン] 実行後にサマリーレポートを自動生成する
[PDF論文全文の翻訳機能](https://www.bilibili.com/video/BV1KT411x7Wn) | [プラグイン] PDF論文のタイトルと要約を抽出し、全文を翻訳するマルチスレッド
[Arxivアシスタント](https://www.bilibili.com/video/BV1LM4y1279X) | [プラグイン] arxiv論文のURLを入力すると、要約を翻訳してPDFをダウンロードできます
LaTeX論文の一括校正 | [プラグイン] Grammarlyのように、LaTeX論文の文法とスペルを修正して対照PDFを出力する
[Google Scholar統合アシスタント](https://www.bilibili.com/video/BV19L411U7ia) | [プラグイン] 任意のGoogle Scholar検索ページのURLを指定して、関連資料をGPTに書かせることができます
インターネット情報の集約+GPT | [プラグイン] インターネットから情報を取得して質問に答え、情報が常に最新になるようにします
⭐Arxiv論文の詳細な翻訳 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [プラグイン] arxiv論文を超高品質で翻訳します。最高の論文翻訳ツールです
⭐[リアルタイム音声入力](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [プラグイン] 非同期[音声をリッスン(https://www.bilibili.com/video/BV1AV4y187Uy/)し、自動で文章を区切り、回答のタイミングを自動で探します
公式/画像/表の表示 | 公式の[tex形式とレンダリング形式](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png)を同時に表示し、公式とコードのハイライトをサポートします
⭐AutoGenマルチエージェントプラグイン | [プラグイン] Microsoft AutoGenを利用して、マルチエージェントのインテリジェントなエマージェンスを探索します
ダーク[テーマ](https://github.com/binary-husky/gpt_academic/issues/173)を起動 | ブラウザのURLに```/?__theme=dark```を追加すると、ダークテーマに切り替えられます
[複数のLLMモデル](https://www.bilibili.com/video/BV1wT411p7yf)のサポート | GPT3.5、GPT4、[Tsinghua ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)、[Fudan MOSS](https://github.com/OpenLMLab/MOSS)などを同時に使えるのは最高の感じですよね?
⭐ChatGLM2ファインチューニングモデル | ChatGLM2ファインチューニングモデルをロードして使用することができ、ChatGLM2ファインチューニングの補助プラグインが用意されています
さらなるLLMモデルの導入、[HuggingFaceデプロイのサポート](https://huggingface.co/spaces/qingxu98/gpt-academic) | Newbingインターフェース新しいBingの追加、Tsinghua [Jittorllms](https://github.com/Jittor/JittorLLMs)の導入、[LLaMA](https://github.com/facebookresearch/llama)および[盤古α](https://openi.org.cn/pangu/)のサポート
⭐[void-terminal](https://github.com/binary-husky/void-terminal) pipパッケージ | GUIから独立して、Pythonから直接このプロジェクトのすべての関数プラグインを呼び出せます開発中
⭐Void Terminalプラグイン | [プラグイン] 自然言語で、このプロジェクトの他のプラグインを直接実行します
その他の新機能の紹介(画像生成など)...... | 末尾をご覧ください ......
</div>
- もし出力に数式が含まれている場合、TeX形式とレンダリング形式の両方で表示されます。これにより、コピーと読み取りが容易になります。
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- プロジェクトのコードを見るのがめんどくさい?プロジェクト全体を`chatgpt`に広報口頭発表してもらえるよ
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- 異なる言語モデルの組み合わせ呼び出しChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# インストール
### 方法I直接実行Windows、Linux、またはMacOS
1. プロジェクトをダウンロード
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. APIキーを設定する
`config.py`でAPIキーやその他の設定を設定します。特殊なネットワーク環境の設定方法については、[こちらをクリックして確認してください](https://github.com/binary-husky/gpt_academic/issues/1)。[Wikiページ](https://github.com/binary-husky/gpt_academic/wiki/Getting-Started)も参照してください。
「プログラムは、`config.py`と同じ場所にある`config_private.py`という名前のプライベート設定ファイルが存在するかどうかを優先的にチェックし、同じ名前の設定をコピーします。この読み込みロジックを理解できる場合、`config.py`の横に`config_private.py`という名前の新しい設定ファイルを作成し、`config.py`の設定を転送(コピー)することを強くお勧めします(変更した設定項目だけをコピーします)。」
「プロジェクトを環境変数で設定することもサポートしています。環境変数の書式は、`docker-compose.yml`ファイルや[Wikiページ](https://github.com/binary-husky/gpt_academic/wiki/Getting-Started)を参考にしてください。設定の優先度は、`環境変数` > `config_private.py` > `config.py`の順です。」
3. 依存関係をインストールする
```sh
# オプションIPythonに詳しい場合、Python 3.9以上公式のpipソースまたは阿里pipソースを使用し、一時的なソースの変更方法は、python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/です。
python -m pip install -r requirements.txt
# オプションIIAnacondaを使用する場合手順は同様です (https://www.bilibili.com/video/BV1rc411W7Dr)
conda create -n gptac_venv python=3.11 # Anaconda環境を作成
conda activate gptac_venv # Anaconda環境をアクティベート
python -m pip install -r requirements.txt # この手順はpipのインストール手順と同じです
```
<details><summary>清華ChatGLM2/復旦MOSS/RWKVがバックエンドとしてサポートされている場合、ここをクリックして展開してください</summary>
<p>
【オプションステップ】 清華ChatGLM2/復旦MOSSをバックエンドとしてサポートする場合は、さらに追加の依存関係をインストールする必要があります前提条件Pythonに精通していて、PytorchとNVIDIA GPUを使用したことがあり、十分なコンピュータの構成を持っていること
```sh
# 【オプションステップI】 清華ChatGLM2のサポートを追加する。 清華ChatGLM2に関する注意点 "Call ChatGLM fail 不能正常加载ChatGLM的参数" のエラーが発生した場合、次の手順を参照してください。 1: デフォルトでインストールされているのはtorch+cpu版です。CUDAを使用するにはtorchをアンインストールしてtorch+cuda版を再インストールする必要があります。 2: モデルをロードできない場合は、request_llm/bridge_chatglm.pyのモデル精度を変更できます。AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)をAutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)に変更します。
python -m pip install -r request_llms/requirements_chatglm.txt
# 【オプションステップII】 復旦MOSSのサポートを追加する
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # このコマンドを実行するときは、プロジェクトのルートパスである必要があります。
# 【オプションステップIII】 RWKV Runnerのサポートを追加する
Wikiを参照してください: https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# 【オプションステップIV】 config.py設定ファイルに、以下のすべてのモデルが含まれていることを確認します。以下のモデルがすべてサポートされていますjittorllmsはDockerのみサポートされています
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. 実行する
```sh
python main.py
```
### 方法IIDockerを使用する
0. プロジェクトのフルスケールデプロイこれは、CUDAとLaTeXを含む大規模なイメージですが、ネットワーク速度が遅いまたはディスク容量が小さい場合はおすすめしません
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
```sh
# docker-compose.ymlを編集し、スキーム0を残し、その他を削除してから実行する
docker-compose up
```
1. ChatGPT + 文心一言 + sparkなどのオンラインモデルのみを含むほとんどの人におすすめ
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
```sh
# docker-compose.ymlを編集し、スキーム1を残し、その他を削除してから実行する
docker-compose up
```
P.S. LaTeXプラグインの機能を使用する場合は、Wikiを参照してください。また、LaTeX機能を使用するためには、スキーム4またはスキーム0を直接使用することもできます。
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通慧千問Nvidia Dockerに精通している場合
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
```sh
# docker-compose.ymlを編集し、スキーム2を残し、その他を削除してから実行する
docker-compose up
```
### 方法IIIその他のデプロイメントオプション
1. **Windowsのワンクリック実行スクリプト**。
Python環境に詳しくないWindowsユーザーは、[リリース](https://github.com/binary-husky/gpt_academic/releases)からワンクリック実行スクリプトをダウンロードして、ローカルモデルのないバージョンをインストールできます。
スクリプトの貢献者は[oobabooga](https://github.com/oobabooga/one-click-installers)です。
2. 第三者のAPI、Azureなど、文心一言、星火などを使用するには、[Wikiページ](https://github.com/binary-husky/gpt_academic/wiki/Getting-Started)を参照してください。
3. クラウドサーバーでのリモートデプロイの回避策ガイドを参照してください。
[クラウドサーバーでのリモートデプロイの回避策ガイドwiki](https://github.com/binary-husky/gpt_academic/wiki/Getting-Started#%E4%BA%91%E3%82%B5%E3%83%BC%E3%83%90%E3%83%BC%E3%83%AA%E3%82%BC%E3%83%A0%E3%82%B5%E3%83%BC%E3%83%90%E3%81%AE%E3%83%AA%E3%83%A2%E3%83%BC%E3%83%88%E3%83%87%E3%83%97%E3%83%AD%E3%82%A4%E6%8C%87%E5%8D%97)
4. その他の新しいデプロイプラットフォームや方法
- Sealosを使用した[ワンクリックデプロイ](https://github.com/binary-husky/gpt_academic/issues/993)
- WSL2Windows Subsystem for Linuxの使用方法については、[デプロイwiki-2](https://github.com/binary-husky/gpt_academic/wiki/Getting-Started)を参照してください。
- サブパス(例:`http://localhost/subpath`でFastAPIを実行する方法については、[FastAPIの実行方法](docs/WithFastapi.md)を参照してください。
# 高度な使用法
### Iカスタムショートカットボタンの作成学術的なショートカットキー
テキストエディタで`core_functional.py`を開き、次の項目を追加し、プログラムを再起動します。(ボタンが存在する場合、プレフィックスとサフィックスはホット変更に対応しており、プログラムを再起動せずに有効にすることができます。)
例:
```
"超级英译中" {
# プレフィックス、入力の前に追加されます。例えば、要求を記述するために使用されます。翻訳、コードの解説、校正など
"プレフィックス" "下記の内容を中国語に翻訳し、専門用語を一つずつマークダウンテーブルで解説してください:\n\n"、
# サフィックス、入力の後に追加されます。プレフィックスと一緒に使用して、入力内容を引用符で囲むことができます。
"サフィックス" ""、
}、
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II関数プラグインのカスタマイズ
自分の望む任意のタスクを実行するために、強力な関数プラグインを作成できます。
このプロジェクトのプラグインの作成とデバッグの難易度は非常に低く、一定のPythonの基礎知識があれば、提供されたテンプレートを参考に自分自身のプラグイン機能を実装することができます。
詳細については、[関数プラグインガイド](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)を参照してください。
# 更新
### Iダイナミック
1. 会話の保存機能。プラグインエリアで `Save Current Conversation` を呼び出すだけで、現在の会話を読み取り可能で復旧可能なhtmlファイルとして保存できます。
また、プラグインエリア(ドロップダウンメニュー)で `Load Conversation History Archive` を呼び出すことで、以前の会話を復元できます。
ヒント:ファイルを指定せずに `Load Conversation History Archive` をクリックすると、履歴のhtmlアーカイブのキャッシュを表示することができます。
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ⭐Latex/Arxiv論文の翻訳機能⭐
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. ゼロのターミナル(自然言語入力からユーザの意図を理解+他のプラグインを自動的に呼び出す)
- ステップ1「プラグインのPDF論文の翻訳を呼び出してください、アドレスはhttps://openreview.net/pdf?id=rJl0r3R9KX」と入力します。
- ステップ2「Zero Terminal」をクリックします。
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. モジュール化された機能設計、シンプルなインターフェイスで強力な機能をサポートする
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. 他のオープンソースプロジェクトの翻訳
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. [live2d](https://github.com/fghrsh/live2d_demo)のデコレーション機能(デフォルトでは無効で、`config.py`を変更する必要があります)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. OpenAI画像生成
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. OpenAIオーディオ解析と要約
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Latex全体の校正と修正
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. 言語、テーマの切り替え
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### IIバージョン:
- version 3.70todo: AutoGenプラグインのテーマを最適化し、一連の派生プラグインを設計する
- version 3.60: AutoGenを次世代プラグインの基盤として導入
- version 3.57: GLM3、星火v3、文心一言v4をサポート、ローカルモデルの並行バグを修正
- version 3.56: 基本機能ボタンを動的に追加、新しい報告書PDF集約ページ
- version 3.55: フロントエンドのデザインを再構築し、浮動ウィンドウとメニューバーを導入
- version 3.54: 新しい動的コードインタプリタCode Interpreterの追加未完成
- version 3.53: 異なるテーマを動的に選択できるように、安定性の向上と複数ユーザの競合問題の解決
- version 3.50: 自然言語でこのプロジェクトのすべての関数プラグインを呼び出すことができるようになりましたゼロのターミナルプラグインの分類をサポートし、UIを改善し、新しいテーマを設計
- version 3.49: Baidu Qianfanプラットフォームと文心一言をサポート
- version 3.48: Alibaba DAMO Academy Tongyi Qianwen、Shanghai AI-Lab Shusheng、Xunfei Xinghuoをサポート
- version 3.46: 完全なオートモードのリアルタイム音声対話をサポート
- version 3.45: カスタムChatGLM2ファインチューニングモデルをサポート
- version 3.44: 公式にAzureをサポート、UIの使いやすさを最適化
- version 3.4: +arxiv論文の翻訳、latex論文の校閲機能
- version 3.3: +インターネット情報の総合機能
- version 3.2: 関数プラグインがさらに多くのパラメータインターフェースをサポート会話の保存機能、任意の言語のコードの解釈、同時に任意のLLMの組み合わせを尋ねる
- version 3.1: 複数のgptモデルに同時に質問できるようにサポートされました api2dをサポートし、複数のapikeyの負荷分散をサポートしました
- version 3.0: chatglmと他の小さなllmのサポート
- version 2.6: プラグインの構造を再構築し、対話性を高め、より多くのプラグインを追加しました
- version 2.5: 自己更新、ソースコード全体の要約時のテキストの長さ、トークンのオーバーフローの問題を解決しました
- version 2.4: (1)新しいPDF全文翻訳機能を追加しました。(2)入力エリアの位置を切り替えるための新しい機能を追加しました。(3)垂直レイアウトオプションを追加しました。(4)マルチスレッド関数プラグインを最適化しました。
- version 2.3: マルチスレッドの対話を強化しました
- version 2.2: 関数プラグインのホットリロードをサポート
- version 2.1: 折りたたみ式のレイアウト
- version 2.0: モジュール化された関数プラグインの導入
- version 1.0: 基本機能
GPT Academic開発者QQグループ`610599535`
-既知の問題
- 一部のブラウザ翻訳プラグインがこのソフトウェアのフロントエンドの実行を妨げる
- 公式Gradioには互換性の問題があり、必ず`requirement.txt`を使用してGradioをインストールしてください
### IIIテーマ
`THEME`オプション(`config.py`)を変更することで、テーマを変更できます
1. `Chuanhu-Small-and-Beautiful` [リンク](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV本プロジェクトの開発ブランチ
1. `master`ブランチ:メインブランチ、安定版
2. `frontier`ブランチ:開発ブランチ、テスト版
### V参考と学習
```
コードの中には、他の優れたプロジェクトのデザインを参考にしたものが多く含まれています。順序は問いません:
# 清華ChatGLM2-6B:
https://github.com/THUDM/ChatGLM2-6B
# 清華JittorLLMs:
https://github.com/Jittor/JittorLLMs
# ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Edge-GPT:
https://github.com/acheong08/EdgeGPT
# ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Oobaboogaワンクリックインストーラー
https://github.com/oobabooga/one-click-installers
# その他:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,363 +0,0 @@
> **참고**
>
> 이 README는 GPT 번역으로 생성되었습니다 (이 프로젝트의 플러그인에 의해 구현됨) . 100% 신뢰할 수 없으므로 번역 결과를 주의 깊게 검토하십시오.
>
> 2023.11.7: 종속성을 설치할 때, `requirements.txt`에 **지정된 버전**을 선택하십시오. 설치 명령어: `pip install -r requirements.txt`.
# <div align=center><img src="logo.png" width="40"> GPT 학술 최적화 (GPT Academic)</div>
**이 프로젝트가 마음에 드신다면, Star를 부탁드립니다. 편리한 단축키나 플러그인을 발견하셨다면 Pull Request를 환영합니다!**
GPT를 사용하여 이 프로젝트를 임의의 언어로 번역하려면 [`multi_language.py`](multi_language.py)를 읽고 실행하십시오 (실험적).
> **참고**
>
> 1. **강조 표시**된 플러그인 (버튼)만 파일을 읽을 수 있습니다. 일부 플러그인은 플러그인 영역의 **드롭다운 메뉴**에 있습니다. 또한 새로운 플러그인에 대한 모든 PR을 환영하며, 이를 **가장 우선적**으로 처리합니다.
>
> 2. 이 프로젝트의 각 파일의 기능은 [자체 분석 보고서 `self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic%EC%A0%9C%ED%94%84%EB%AA%85%EC%84%B1%EB%B0%A9%EC%8B%9D%EC%9D%98_%EA%B2%B0%EA%B3%BC)에서 자세히 설명되어 있습니다. 버전이 반복됨에 따라, 관련 기능 플러그인을 언제든지 클릭하여 GPT를 호출하여 프로젝트의 자체 분석 보고서를 다시 생성할 수 있습니다. 자주 묻는 질문은 [`위키`](https://github.com/binary-husky/gpt_academic/wiki)를 참조하십시오. [일반적인 설치 방법](#installation) | [원클릭 설치 스크립트](https://github.com/binary-husky/gpt_academic/releases) | [설정 설명서](https://github.com/binary-husky/gpt_academic/wiki/%EC%84%A4%EC%A0%95%EC%82%AC%EB%AA%85_%EA%B0%84%EB%8B%A8_%EC%84%B8%ED%8A%B8%EB%B2%84_%EC%B6%94%EA%B0%80)
> 3. 이 프로젝트는 ChatGLM 등 대형 언어 모델 (ChatGLM 등) 실행을 지원하고 권장합니다. 여러 개의 API 키를 동시에 사용할 수 있으며, 구성 파일에 `API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`와 같이 입력할 수 있습니다. `API_KEY`를 일시적으로 변경해야 하는 경우, 입력 영역에 임시 `API_KEY`를 입력한 다음 Enter 키를 누르면 적용됩니다.
<div align="center">
기능 (⭐= 최근 추가 기능) | 설명
--- | ---
⭐[새 모델 추가](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B)! | Baidu [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu)와 Wenxin Yiyan, [Tongyi Qianwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary), Shanghai AI-Lab [Shusheng](https://github.com/InternLM/InternLM), Xunfei [Star](https://xinghuo.xfyun.cn/), [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), Zhipu API, DALLE3
문체 개선, 번역, 코드 설명 | 일괄적인 문체 개선, 번역, 논문 문법 오류 탐색, 코드 설명
[사용자 정의 단축키](https://www.bilibili.com/video/BV14s4y1E7jN) | 사용자 정의 단축키 지원
모듈화 설계 | 사용자 정의 가능한 강력한 [플러그인](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions) 지원, 플러그인 지원 [핫 업데이트](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[프로그램 분석](https://www.bilibili.com/video/BV1cj411A7VW) | [플러그인] 한 번에 Python/C/C++/Java/Lua/... 프로젝트 트리를 분석하거나 [자체 분석](https://www.bilibili.com/video/BV1cj411A7VW)
논문 읽기, 논문 [번역](https://www.bilibili.com/video/BV1KT411x7Wn) | [플러그인] LaTeX/PDF 논문 전문을 읽고 요약 생성
LaTeX 전체 [번역](https://www.bilibili.com/video/BV1nk4y1Y7Js/), [개선](https://www.bilibili.com/video/BV1FT411H7c5/) | [플러그인] LaTeX 논문 번역 또는 개선
일괄 주석 생성 | [플러그인] 함수 주석 일괄 생성
Markdown [한 / 영 번역](https://www.bilibili.com/video/BV1yo4y157jV/) | 위의 5개 언어로 작성된 [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)를 살펴보셨나요?
채팅 분석 보고서 생성 | [플러그인] 실행 후 요약 보고서 자동 생성
[PDF 논문 전체 번역](https://www.bilibili.com/video/BV1KT411x7Wn) 기능 | [플러그인] PDF 논문 제목 및 요약 추출 + 전체 번역 (멀티 스레드)
[Arxiv 도우미](https://www.bilibili.com/video/BV1LM4y1279X) | [플러그인] arxiv 논문 url 입력시 요약 번역 + PDF 다운로드
LaTeX 논문 일괄 교정 | [플러그인] Grammarly를 모사하여 LaTeX 논문에 대한 문법 및 맞춤법 오류 교정 + 대조 PDF 출력
[Google 학술 통합 도우미](https://www.bilibili.com/video/BV19L411U7ia) | 임의의 Google 학술 검색 페이지 URL을 지정하여 gpt가 [related works를 작성](https://www.bilibili.com/video/BV1GP411U7Az/)하게 해주세요.
인터넷 정보 집계 + GPT | [플러그인] [인터넷에서 정보를 가져와서](https://www.bilibili.com/video/BV1om4y127ck) 질문에 대답하도록 GPT를 자동화하세요. 정보가 절대로 오래되지 않도록 해줍니다.
⭐Arxiv 논문 세심한 번역 ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [플러그인] [arxiv 논문을 고품질 번역으로](https://www.bilibili.com/video/BV1dz4y1v77A/) 번역하는 최고의 도구
⭐[실시간 음성 대화 입력](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [플러그인] 비동기적으로 [오디오를 모니터링](https://www.bilibili.com/video/BV1AV4y187Uy/)하여 문장을 자동으로 분절하고 대답 시기를 자동으로 찾습니다.
수식/이미지/표 표시 | [tex 형식 및 렌더링 형식](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png)의 수식을 동시에 표시하며, 수식 및 코드 하이라이트 지원
⭐AutoGen multi-agent 플러그인 | [플러그인] Microsoft AutoGen을 활용하여 여러 개의 에이전트가 지능적으로 발생하는 가능성을 탐색하세요!
다크 모드 주제 지원 | 브라우저의 URL 뒤에 ```/?__theme=dark```를 추가하여 다크 모드로 전환하세요.
[다양한 LLM 모델](https://www.bilibili.com/video/BV1wT411p7yf) 지원 | GPT3.5, GPT4, [Tsinghua ChatGLM2](https://github.com/THUDM/ChatGLM2-6B), [Fudan MOSS](https://github.com/OpenLMLab/MOSS)을 함께 사용하는 느낌은 좋을 것입니다, 그렇지 않습니까?
⭐ChatGLM2 fine-tuned 모델 | ChatGLM2 fine-tuned 모델 로드를 지원하며, ChatGLM2 fine-tuned 보조 플러그인 제공
더 많은 LLM 모델 연결, [huggingface 배포](https://huggingface.co/spaces/qingxu98/gpt-academic) 지원 | Newbing 인터페이스(신 밍), Tsinghua [Jittorllms](https://github.com/Jittor/JittorLLMs) 도입, [LLaMA](https://github.com/facebookresearch/llama)와 [Pangu-alpha](https://openi.org.cn/pangu/)를 지원합니다.
⭐[void-terminal](https://github.com/binary-husky/void-terminal) 패키지 | GUI에서 독립, Python에서 이 프로젝트의 모든 함수 플러그인을 직접 호출 (개발 중)
⭐Void 터미널 플러그인 | [플러그인] 자연어로 이 프로젝트의 다른 플러그인을 직접 영속합니다.
기타 새로운 기능 소개 (이미지 생성 등) …… | 본 문서 맨 끝 참조 ……
</div>
- 새로운 인터페이스(`config.py`의 LAYOUT 옵션 수정으로 "왼쪽-오른쪽 레이아웃"과 "위-아래 레이아웃"을 전환할 수 있음)
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
- 모든 버튼은 functional.py를 동적으로 읽어 생성되므로 원하는대로 사용자 정의 기능을 추가할 수 있으며 클립 보드를 해제할 수 있습니다.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- 문체 개선/오류 수정
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- If the output contains equations, they will be displayed in both tex format and rendered format for easy copying and reading.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Don't feel like looking at the project code? Just give it to ChatGPT and let it dazzle you.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Mix and match multiple powerful language models (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# Installation
### Installation Method I: Run Directly (Windows, Linux or MacOS)
1. Download the project
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure API_KEY
In `config.py`, configure the API KEY and other settings, [click here to view special network environment configuration methods](https://github.com/binary-husky/gpt_academic/issues/1). [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
" The program will first check if there is a confidential configuration file named `config_private.py` and use its configuration to override the configuration with the same name in `config.py`. If you can understand this reading logic, we strongly recommend that you create a new configuration file named `config_private.py` next to `config.py` and move (copy) the configuration from `config.py` to `config_private.py` (only copy the modified configuration items). "
" You can configure the project through `environment variables`. The format of the environment variables can be found in the `docker-compose.yml` file or our [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明). The priority of the configuration reading is: `environment variables` > `config_private.py` > `config.py`. "
3. Install dependencies
```sh
# (Option I: if familiar with python, python>=3.9) Note: Use the official pip source or Aliyun pip source. Temporary switching source method: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Option II: using Anaconda) The steps are similar (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Create an Anaconda environment
conda activate gptac_venv # Activate the Anaconda environment
python -m pip install -r requirements.txt # This step is the same as the pip installation step
```
<details><summary>Click here to expand if you need support for Tsinghua ChatGLM2/Fudan MOSS/RWKV backend</summary>
<p>
[Optional Step] If you need support for Tsinghua ChatGLM2/Fudan MOSS as the backend, you need to install additional dependencies (Prerequisites: Familiar with Python + Have used Pytorch + Sufficient computer configuration):
```sh
# [Optional Step I] Support for Tsinghua ChatGLM2. Note for Tsinghua ChatGLM: If you encounter the error "Call ChatGLM fail cannot load ChatGLM parameters", refer to the following: 1: The default installation above is torch+cpu version. To use cuda, uninstall torch and reinstall torch+cuda; 2: If you cannot load the model due to insufficient computer configuration, you can modify the model precision in request_llm/bridge_chatglm.py, change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# [Optional Step II] Support for Fudan MOSS
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # When executing this line of code, make sure you are in the project root path
# [Optional Step III] Support for RWKV Runner
Refer to the wiki: https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# [Optional Step IV] Make sure that the AVAIL_LLM_MODELS in the config.py configuration file includes the expected models. The currently supported models are as follows (the jittorllms series only supports the docker solution):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Run
```sh
python main.py
```
### Installation Method II: Use Docker
0. Deploy all the capabilities of the project (this is a large image that includes cuda and latex. However, it is not recommended if your internet speed is slow or your hard disk is small)
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# Modify docker-compose.yml, keep scheme 0 and delete the others. Then run:
docker-compose up
```
1. ChatGPT+Random Quotes+Wikipedia Summary+Spark and other online models (recommended for most people)
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
# Modify docker-compose.yml, keep scheme 1 and delete the others. Then run:
docker-compose up
```
P.S. If you need the Latex plugin feature, please refer to the Wiki. Additionally, you can also use scheme 4 or scheme 0 directly to get the Latex feature.
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + Thousand Questions (Requires familiarity with [Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian) runtime)
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# Modify docker-compose.yml, keep scheme 2 and delete the others. Then run:
docker-compose up
```
### Installation Method III: Other Deployment Methods
1. **One-click run script for Windows**.
Windows users who are completely unfamiliar with the Python environment can download the one-click run script without local models from the [Release](https://github.com/binary-husky/gpt_academic/releases) section.
The script contribution comes from [oobabooga](https://github.com/oobabooga/one-click-installers).
2. Use third-party APIs, Azure, etc., Random Quotes, Spark, etc., see the [Wiki page](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
3. Pitfall guide for remote deployment on cloud servers.
Please visit the [cloud server remote deployment wiki](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97)
4. Some new deployment platforms or methods
- Use Sealos for [one-click deployment](https://github.com/binary-husky/gpt_academic/issues/993).
- Use WSL2 (Windows Subsystem for Linux). Please visit [deployment wiki-2](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2)
- How to run in a subpath (such as `http://localhost/subpath`). Please refer to [FastAPI running instructions](docs/WithFastapi.md)
# 고급 사용법
### I: 사용자 정의 바로 가기 버튼 추가 (학술 단축키)
임의의 텍스트 편집기로 `core_functional.py` 파일을 열고 다음과 같은 항목을 추가한 다음 프로그램을 다시 시작하십시오. (이미 버튼이 있는 경우에는 접두사와 접미사를 실시간으로 수정할 수 있으므로 프로그램을 다시 시작할 필요가 없습니다.)
예시:
```
"초급영문 번역": {
# 접두사, 입력 내용 앞에 추가됩니다. 예를 들어 요구 사항을 설명하는 데 사용됩니다. 예를 들어 번역, 코드 설명, 교정 등
"Prefix": "다음 내용을 한국어로 번역하고 전문 용어에 대한 설명을 적용한 마크다운 표를 사용하세요:\n\n",
# 접미사, 입력 내용 뒤에 추가됩니다. 예를 들어 접두사와 함께 입력 내용을 따옴표로 감쌀 수 있습니다.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II: 사용자 정의 함수 플러그인
원하는 작업을 수행하기 위해 능력있는 함수 플러그인을 작성하세요.
이 프로젝트의 플러그인 작성 및 디버깅은 난이도가 낮으며, 일정한 Python 기본 지식만 있으면 우리가 제공하는 템플릿을 본따서 고유한 플러그인 기능을 구현할 수 있습니다.
자세한 내용은 [함수 플러그인 가이드](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)를 참조하세요.
# 업데이트
### I: 다이나믹
1. 대화 저장 기능. 플러그인 영역에서 '현재 대화 저장'을 호출하여 현재 대화를 볼 수 있고, html 파일을 복구할 수 있습니다.
또한 플러그인 영역에서 '대화 기록 불러오기'를 호출하여 이전 대화를 복원할 수 있습니다.
팁: 파일을 지정하지 않고 '대화 기록 불러오기'를 바로 클릭하면 이전 html 기록 캐시를 볼 수 있습니다.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ⭐Latex/Arxiv 논문 번역 기능⭐
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. 빈 터미널 (자연어 입력에서 사용자 의도 이해 + 자동 플러그인 호출)
- 단계 1: "플러그인을 사용하여 PDF 논문을 번역하십시오. 주소는 https://openreview.net/pdf?id=rJl0r3R9KX입니다." 입력
- 단계 2: "빈 터미널" 클릭
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. 모듈화된 기능 디자인, 간단한 인터페이스로 강력한 기능 제공
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. 다른 오픈 소스 프로젝트 번역
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. [live2d](https://github.com/fghrsh/live2d_demo)의 작은 기능 추가 (기본 설정은 닫혀 있으며, `config.py`를 수정해야 합니다.)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. OpenAI 이미지 생성
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. OpenAI 오디오 분석 및 요약
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Latex 전체 교정 오류
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. 언어, 테마 변경
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II: 버전:
- 버전 3.70 (예정): AutoGen 플러그인 테마 개선 및 다른 테마 플러그인 디자인
- 버전 3.60: AutoGen을 새로운 세대 플러그인의 기반으로 도입
- 버전 3.57: GLM3, Starfire v3, 文心一言 v4 지원, 로컬 모델의 동시성 버그 수정
- 버전 3.56: 동적으로 기본 기능 버튼 추가, 새로운 보고서 PDF 요약 페이지
- 버전 3.55: 프론트 엔드 인터페이스 리팩토링, 화면 따라다니는 윈도우 및 메뉴 바 도입
- 버전 3.54: 새로운 동적 코드 해석기 (Code Interpreter) 추가 (완벽하게 완성되지 않음)
- 버전 3.53: 다른 인터페이스 테마 동적 선택 기능 추가, 안정성 향상 및 다중 사용자 충돌 문제 해결
- 버전 3.50: 자연어로 이 프로젝트의 모든 함수 플러그인을 호출하는 기능 (빈 터미널) 추가, 플러그인 분류 지원, UI 개선, 새로운 테마 설계
- 버전 3.49: Baidu Qianfan 플랫폼 및 문심일언 지원
- 버전 3.48: Ali DameiYuan Sematic Query, Shanghai AI-Lab Shusheng, Xunfei Starfire 지원
- 버전 3.46: 완전 자동 운전 가능한 실시간 음성 대화 지원
- 버전 3.45: 사용자 정의 ChatGLM2 fine-tuning 모델 지원
- 버전 3.44: Azure 정식 지원, 인터페이스의 사용 편의성 개선
- 버전 3.4: +arxiv 논문 번역, latex 논문 교정 기능 추가
- 버전 3.3: +인터넷 정보 종합 기능
- 버전 3.2: 함수 플러그인이 더 많은 매개변수 인터페이스를 지원합니다 (대화 저장 기능, 임의의 언어 코드 해석 + 임의의 LLM 조합을 동시에 요청)
- 버전 3.1: 여러 GPT 모델에 동시에 질문할 수 있는 기능 추가! api2d 지원, 여러 개의 apikey 부하 균형 조정 지원
- 버전 3.0: chatglm 및 기타 소규모 llm 지원
- 버전 2.6: 플러그인 구조를 재구성하여 상호 작용성 향상, 더 많은 플러그인 추가
- 버전 2.5: 자동 업데이트, 소스 코드 요약 중 텍스트가 너무 길고 토큰이 오버플로되는 문제 해결
- 버전 2.4: (1)PDF 전체 번역 기능 추가; (2)입력 영역 위치 전환 기능 추가; (3)수직 레이아웃 옵션 추가; (4)멀티 스레드 함수 플러그인 최적화
- 버전 2.3: 멀티 스레드 상호 작용성 강화
- 버전 2.2: 함수 플러그인의 핫 리로드 지원
- 버전 2.1: 접을 수 있는 레이아웃
- 버전 2.0: 모듈화 함수 플러그인 도입
- 버전 1.0: 기본 기능
GPT Academic 개발자 QQ 그룹: `610599535`
- 알려진 문제
- 특정 웹 브라우저 번역 플러그인이 이 소프트웨어의 프론트엔드 실행에 방해가 되는 경우가 있습니다.
- 공식 Gradio에는 호환성 문제가 많기 때문에 `requirement.txt`를 사용하여 Gradio를 설치하십시오.
### III: 테마
`THEME` 옵션 (`config.py`)을 수정하여 테마를 변경할 수 있습니다.
1. `Chuanhu-Small-and-Beautiful` [URL](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV: 이 프로젝트의 개발 브랜치
1. `master` 브랜치: 메인 브랜치, 안정 버전
2. `frontier` 브랜치: 개발 브랜치, 테스트 버전
### V: 참고 및 학습
```
코드에서는 다른 우수한 프로젝트의 디자인을 많이 참고했습니다. 순서는 문제 없이 나열됩니다:
# 清华ChatGLM2-6B:
https://github.com/THUDM/ChatGLM2-6B
# 清华JittorLLMs:
https://github.com/Jittor/JittorLLMs
# ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Edge-GPT:
https://github.com/acheong08/EdgeGPT
# ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Oobabooga 원 클릭 설치 프로그램:
https://github.com/oobabooga/one-click-installers
# 더보기:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,357 +0,0 @@
> **Nota**
>
> Este README foi traduzido pelo GPT (implementado por um plugin deste projeto) e não é 100% confiável. Por favor, verifique cuidadosamente o resultado da tradução.
>
> 7 de novembro de 2023: Ao instalar as dependências, favor selecionar as **versões especificadas** no `requirements.txt`. Comando de instalação: `pip install -r requirements.txt`.
# <div align=center><img src="logo.png" width="40"> GPT Acadêmico</div>
**Se você gosta deste projeto, por favor, dê uma estrela nele. Se você inventou atalhos de teclado ou plugins úteis, fique à vontade para criar pull requests!**
Para traduzir este projeto para qualquer idioma utilizando o GPT, leia e execute [`multi_language.py`](multi_language.py) (experimental).
> **Nota**
>
> 1. Observe que apenas os plugins (botões) marcados em **destaque** são capazes de ler arquivos, alguns plugins estão localizados no **menu suspenso** do plugin area. Também damos boas-vindas e prioridade máxima a qualquer novo plugin via PR.
>
> 2. As funcionalidades de cada arquivo deste projeto estão detalhadamente explicadas em [autoanálise `self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告). Com a iteração das versões, você também pode clicar nos plugins de funções relevantes a qualquer momento para chamar o GPT para regerar o relatório de autonálise do projeto. Perguntas frequentes [`wiki`](https://github.com/binary-husky/gpt_academic/wiki) | [Método de instalação convencional](#installation) | [Script de instalação em um clique](https://github.com/binary-husky/gpt_academic/releases) | [Explicação de configuração](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明)。
>
> 3. Este projeto é compatível e encoraja o uso de modelos de linguagem chineses, como ChatGLM. Vários api-keys podem ser usados simultaneamente, podendo ser especificados no arquivo de configuração como `API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`. Quando precisar alterar temporariamente o `API_KEY`, insira o `API_KEY` temporário na área de entrada e pressione Enter para que ele seja efetivo.
<div align="center">
Funcionalidades (⭐= funcionalidade recentemente adicionada) | Descrição
--- | ---
⭐[Integração com novos modelos](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | [Qianfan](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu) da Baidu, Wenxin e [Tongyi Qianwen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary), [Shusheng](https://github.com/InternLM/InternLM) da Shanghai AI-Lab, [Xinghuo](https://xinghuo.xfyun.cn/) da Iflytek, [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), Zhipu API, DALLE3
Aprimoramento, tradução, explicação de códigos | Aprimoramento com um clique, tradução, busca de erros gramaticais em artigos e explicação de códigos
[Atalhos de teclado personalizados](https://www.bilibili.com/video/BV14s4y1E7jN) | Suporte para atalhos de teclado personalizados
Design modular | Suporte a plugins poderosos e personalizáveis, plugins com suporte a [atualização a quente](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Análise de código](https://www.bilibili.com/video/BV1cj411A7VW) | [Plugin] Análise instantânea da estrutura de projetos em Python/C/C++/Java/Lua/... ou [autoanálise](https://www.bilibili.com/video/BV1cj411A7VW)
Leitura de artigos, [tradução](https://www.bilibili.com/video/BV1KT411x7Wn) de artigos | [Plugin] Interpretação instantânea de artigos completos em latex/pdf e geração de resumos
Tradução completa de artigos em latex [PDF](https://www.bilibili.com/video/BV1nk4y1Y7Js/), [aprimoramento](https://www.bilibili.com/video/BV1FT411H7c5/) | [Plugin] Tradução completa ou aprimoramento de artigos em latex com um clique
Geração em lote de comentários | [Plugin] Geração em lote de comentários de funções com um clique
Tradução (inglês-chinês) de Markdown | [Plugin] Você já viu o [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md) nas 5 línguas acima?
Criação de relatório de análise de bate-papo | [Plugin] Geração automática de relatório de resumo após a execução
Tradução [completa de artigos em PDF](https://www.bilibili.com/video/BV1KT411x7Wn) | [Plugin] Extração de título e resumo de artigos em PDF + tradução completa (multithreading)
Auxiliar Arxiv | [Plugin] Insira o URL de um artigo Arxiv para traduzir o resumo + baixar o PDF com um clique
Correção automática de artigos em latex | [Plugin] Correções gramaticais e ortográficas de artigos em latex semelhante ao Grammarly + saída PDF comparativo
Auxiliar Google Scholar | [Plugin] Insira qualquer URL da busca do Google Acadêmico e deixe o GPT [escrever trabalhos relacionados](https://www.bilibili.com/video/BV1GP411U7Az/) para você
Agregação de informações da Internet + GPT | [Plugin] Capturar informações da Internet e obter respostas de perguntas com o GPT em um clique, para que as informações nunca fiquem desatualizadas
⭐Tradução refinada de artigos do Arxiv ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [Plugin] Tradução de alta qualidade de artigos do Arxiv com um clique, a melhor ferramenta de tradução de artigos atualmente
⭐Entrada de conversa de voz em tempo real | [Plugin] Monitoramento de áudio [assíncrono](https://www.bilibili.com/video/BV1AV4y187Uy/), segmentação automática de frases, detecção automática de momentos de resposta
Exibição de fórmulas, imagens e tabelas | Exibição de fórmulas em formato tex e renderizadas simultaneamente, suporte a fórmulas e destaque de código
⭐Plugin AutoGen para vários agentes | [Plugin] Explore a emergência de múltiplos agentes com o AutoGen da Microsoft!
Ativar o tema escuro | Adicione ```/?__theme=dark``` ao final da URL para alternar para o tema escuro
Suporte a múltiplos modelos LLM | Ser atendido simultaneamente pelo GPT3.5, GPT4, [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) do Tsinghua University e [MOSS](https://github.com/OpenLMLab/MOSS) da Fudan University se sente incrível, não é mesmo?
⭐Modelo de ajuste fino ChatGLM2 | Suporte para carregar o modelo ChatGLM2 ajustado e fornecer plugins de assistência ao ajuste fino do ChatGLM2
Mais modelos LLM e suporte para [implantação pela HuggingFace](https://huggingface.co/spaces/qingxu98/gpt-academic) | Integração com a interface Newbing (Bing novo), introdução do [Jittorllms](https://github.com/Jittor/JittorLLMs) da Tsinghua University com suporte a [LLaMA](https://github.com/facebookresearch/llama) e [Panguα](https://openi.org.cn/pangu/)
⭐Pacote pip [void-terminal](https://github.com/binary-husky/void-terminal) | Chame todas as funções plugins deste projeto diretamente em Python, sem a GUI (em desenvolvimento)
⭐Plugin Terminal do Vácuo | [Plugin] Chame outros plugins deste projeto diretamente usando linguagem natural
Apresentação de mais novas funcionalidades (geração de imagens, etc.) ... | Veja no final deste documento ...
</div>
- Nova interface (altere a opção LAYOUT em `config.py` para alternar entre os "Layouts de lado a lado" e "Layout de cima para baixo")
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
- Todos os botões são gerados dinamicamente através da leitura do `functional.py`, você pode adicionar funcionalidades personalizadas à vontade, liberando sua área de transferência
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Aprimoramento/Correção
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- Se a saída contiver fórmulas, elas serão exibidas tanto em formato tex quanto renderizado para facilitar a cópia e a leitura.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Não tem vontade de ver o código do projeto? O projeto inteiro está diretamente na boca do chatgpt.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Combinação de vários modelos de linguagem (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# Instalação
### Método de instalação I: Executar diretamente (Windows, Linux ou MacOS)
1. Baixe o projeto
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Configure a API_KEY
No arquivo `config.py`, configure a API KEY e outras configurações. [Clique aqui para ver o método de configuração em redes especiais](https://github.com/binary-husky/gpt_academic/issues/1). [Página Wiki](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
「 O programa verificará primeiro se existe um arquivo de configuração privada chamado `config_private.py` e substituirá as configurações correspondentes no arquivo `config.py`. Se você entender essa lógica de leitura, é altamente recomendável criar um novo arquivo de configuração chamado `config_private.py` ao lado do `config.py` e copiar as configurações do `config.py` para o `config_private.py` (copiando apenas os itens de configuração que você modificou). 」
「 Suporte para configurar o projeto por meio de `variáveis de ambiente`, o formato de gravação das variáveis de ambiente pode ser encontrado no arquivo `docker-compose.yml` ou em nossa [página Wiki](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明). A prioridade de leitura das configurações é: `variáveis de ambiente` > `config_private.py` > `config.py`. 」
3. Instale as dependências
```sh
# (Opção I: Se você está familiarizado com o Python, Python>=3.9) Observação: Use o pip oficial ou o pip da Aliyun. Método temporário para alternar fontes: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Opção II: Use o Anaconda) Os passos também são semelhantes (https://www.bilibili.com/video/BV1rc411W7Dr):
conda create -n gptac_venv python=3.11 # Crie um ambiente do Anaconda
conda activate gptac_venv # Ative o ambiente do Anaconda
python -m pip install -r requirements.txt # Este passo é igual ao da instalação do pip
```
<details><summary>Se você quiser suporte para o ChatGLM2 do THU/ MOSS do Fudan/RWKV como backend, clique para expandir</summary>
<p>
[Opcional] Se você quiser suporte para o ChatGLM2 do THU/ MOSS do Fudan, precisará instalar dependências extras (pré-requisitos: familiarizado com o Python + já usou o PyTorch + o computador tem configuração suficiente):
```sh
# [Opcional Passo I] Suporte para ChatGLM2 do THU. Observações sobre o ChatGLM2 do THU: Se você encontrar o erro "Call ChatGLM fail 不能正常加载ChatGLM的参数" (Falha ao chamar o ChatGLM, não é possível carregar os parâmetros do ChatGLM), consulte o seguinte: 1: A versão instalada por padrão é a versão torch+cpu. Se você quiser usar a versão cuda, desinstale o torch e reinstale uma versão com torch+cuda; 2: Se a sua configuração não for suficiente para carregar o modelo, você pode modificar a precisão do modelo em request_llm/bridge_chatglm.py, alterando todas as ocorrências de AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) para AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# [Opcional Passo II] Suporte para MOSS do Fudan
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # Observe que você deve estar no diretório raiz do projeto ao executar este comando
# [Opcional Passo III] Suporte para RWKV Runner
Consulte a página Wiki: https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
# [Opcional Passo IV] Verifique se o arquivo de configuração config.py contém os modelos desejados, os modelos compatíveis são os seguintes (a série jittorllms suporta apenas a solução Docker):
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Execute
```sh
python main.py
```
### Método de instalação II: Usando o Docker
0. Implante todas as capacidades do projeto (este é um contêiner grande que inclui CUDA e LaTeX. Não recomendado se você tiver uma conexão lenta com a internet ou pouco espaço em disco)
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# Modifique o arquivo docker-compose.yml para incluir apenas a seção 0 e excluir as outras seções. Em seguida, execute:
docker-compose up
```
1. ChatGPT + 文心一言 + spark + outros modelos online (recomendado para a maioria dos usuários)
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
# Modifique o arquivo docker-compose.yml para incluir apenas a seção 1 e excluir as outras seções. Em seguida, execute:
docker-compose up
```
Obs.: Se você precisar do plugin Latex, consulte a Wiki. Além disso, você também pode usar a seção 4 ou 0 para obter a funcionalidade do LaTeX.
2. ChatGPT + ChatGLM2 + MOSS + LLAMA2 + 通义千问 (você precisa estar familiarizado com o [Nvidia Docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian) para executar este modo)
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# Modifique o arquivo docker-compose.yml para incluir apenas a seção 2 e excluir as outras seções. Em seguida, execute:
docker-compose up
```
### Método de instalação III: Outros métodos de implantação
1. **Script de execução com um clique para Windows**.
Usuários do Windows que não estão familiarizados com o ambiente Python podem baixar o script de execução com um clique da [Release](https://github.com/binary-husky/gpt_academic/releases) para instalar a versão sem modelos locais.
A contribuição do script vem de [oobabooga](https://github.com/oobabooga/one-click-installers).
2. Usar APIs de terceiros, Azure, etc., 文心一言, 星火, consulte a [página Wiki](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
3. Guia para evitar armadilhas na implantação em servidor em nuvem.
Consulte o [wiki de implantação em servidor em nuvem](https://github.com/binary-husky/gpt_academic/wiki/%E4%BA%91%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%BF%9C%E7%A8%8B%E9%83%A8%E7%BD%B2%E6%8C%87%E5%8D%97).
4. Algumas novas plataformas ou métodos de implantação
- Use Sealos [implantação com um clique](https://github.com/binary-husky/gpt_academic/issues/993).
- Use o WSL2 (Subsistema do Windows para Linux). Consulte [wiki de implantação](https://github.com/binary-husky/gpt_academic/wiki/%E4%BD%BF%E7%94%A8WSL2%EF%BC%88Windows-Subsystem-for-Linux-%E5%AD%90%E7%B3%BB%E7%BB%9F%EF%BC%89%E9%83%A8%E7%BD%B2).
- Como executar em um subdiretório da URL (como `http://localhost/subpath`). Consulte [instruções de execução com o FastAPI](docs/WithFastapi.md)
# Uso Avançado
### I: Personalização de Novos Botões de Atalho (Atalhos Acadêmicos)
Abra o arquivo `core_functional.py` em qualquer editor de texto, adicione o seguinte item e reinicie o programa. (Se o botão já existir, o prefixo e o sufixo podem ser modificados a qualquer momento sem reiniciar o programa).
Por exemplo:
```
"超级英译中": {
# Prefixo, adicionado antes do seu input. Por exemplo, usado para descrever sua solicitação, como traduzir, explicar o código, revisar, etc.
"Prefix": "Por favor, traduza o parágrafo abaixo para o chinês e explique cada termo técnico dentro de uma tabela markdown:\n\n",
# Sufixo, adicionado após o seu input. Por exemplo, em conjunto com o prefixo, pode-se colocar seu input entre aspas.
"Suffix": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II: Personalização de Funções Plugins
Crie poderosos plugins de função para executar tarefas que você pode e não pode imaginar.
Criar plugins neste projeto é fácil, basta seguir o modelo fornecido, desde que você tenha conhecimento básico de Python.
Consulte o [Guia dos Plugins de Função](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97) para mais detalhes.
# Atualizações
### I: Dinâmico
1. Função de salvar conversas. Chame a função "Salvar a conversa atual" na área de plugins para salvar a conversa atual em um arquivo HTML legível e recuperável. Além disso, chame a função "Carregar histórico de conversas" na área de plugins (menu suspenso) para restaurar conversas anteriores.
Dica: Se você clicar diretamente em "Carregar histórico de conversas" sem especificar o arquivo, poderá visualizar o cache do histórico do arquivo HTML.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ⭐Tradução de artigos Latex/Arxiv⭐
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. Terminal vazio (entendendo a intenção do usuário a partir do texto em linguagem natural e chamando automaticamente outros plugins)
- Passo 1: Digite "Por favor, chame o plugin 'Traduzir artigo PDF' e forneça o link https://openreview.net/pdf?id=rJl0r3R9KX"
- Passo 2: Clique em "Terminal vazio"
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. Design de recursos modular, interface simples com suporte a recursos poderosos
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. Tradução e interpretação de outros projetos de código aberto
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. Recursos adicionais para [live2d](https://github.com/fghrsh/live2d_demo) (desativados por padrão, requer modificação no arquivo `config.py`)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Geração de imagens pela OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. Análise e resumo de áudio pela OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Correção de erros em texto e código LaTeX
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. Alternância de idioma e tema
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II: Versões:
- Versão 3.70 (a fazer): Melhorar o plugin AutoGen e projetar uma série de plugins relacionados.
- Versão 3.60: Introdução do AutoGen como base para a próxima geração de plugins.
- Versão 3.57: Suporte para GLM3, Starfire v3, Wenxin Yiyan v4, correção de bugs relacionados a modelos locais executados simultaneamente.
- Versão 3.56: Suporte para adicionar dinamicamente botões de função básicos e nova página de resumo em PDF.
- Versão 3.55: Reformulação da interface do usuário, introdução de janelas flutuantes e menus.
- Versão 3.54: Novo interpretador de código dinâmico (Code Interpreter) (em desenvolvimento)
- Versão 3.53: Suporte para alterar dinamicamente o tema da interface, melhorias de estabilidade e correção de conflitos entre vários usuários.
- Versão 3.50: Chamada de todas as funções de plugins deste projeto usando linguagem natural (Terminal vazio), suporte a categorização de plugins, melhorias na interface do usuário e design de novos temas.
- Versão 3.49: Suporte para Baidu Qianfan Platform e Wenxin Yiyan.
- Versão 3.48: Suporte para Alibaba DAMO Academy Tongyi Qianwen, Shanghai AI-Lab Shusheng e Xunfei Xinghuo.
- Versão 3.46: Suporte para diálogos em tempo real totalmente automáticos.
- Versão 3.45: Suporte para personalização do modelo ChatGLM2.
- Versão 3.44: Suporte oficial ao Azure, aprimoramentos na usabilidade da interface.
- Versão 3.4: Tradução completa de artigos Arxiv/Latex, correção de artigos Latex.
- Versão 3.3: Funcionalidade de consulta a informações na internet.
- Versão 3.2: Maior suporte para parâmetros de função de plugins (função de salvar conversas, interpretação de código em qualquer linguagem + perguntas sobre combinações LLM arbitrariamente).
- Versão 3.1: Suporte para fazer perguntas a modelos GPT múltiplos! Suporte para API2D, balanceamento de carga em vários APIKeys.
- Versão 3.0: Suporte para chatglm e outros pequenos modelos LLM.
- Versão 2.6: Refatoração da estrutura de plugins, melhoria na interação, adição de mais plugins.
- Versão 2.5: Auto-atualizável, resolve problemas de texto muito longo ou estouro de tokens ao resumir grandes projetos de código.
- Versão 2.4: (1) Novo recurso de tradução completa de PDF; (2) Nova função para alternar a posição da área de input; (3) Nova opção de layout vertical; (4) Melhoria dos plugins de função em várias threads.
- Versão 2.3: Melhorias na interação em várias threads.
- Versão 2.2: Suporte para recarregar plugins sem reiniciar o programa.
- Versão 2.1: Layout dobrável.
- Versão 2.0: Introdução de plugins de função modular.
- Versão 1.0: Funcionalidades básicas.
GPT Academic QQ Group: `610599535`
- Problemas conhecidos
- Alguns plugins de tradução de navegadores podem interferir na execução deste software.
- A biblioteca Gradio possui alguns bugs de compatibilidade conhecidos. Certifique-se de instalar o Gradio usando o arquivo `requirement.txt`.
### III: Temas
Você pode alterar o tema atualizando a opção `THEME` (config.py).
1. `Chuanhu-Small-and-Beautiful` [Link](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV: Branches de Desenvolvimento deste Projeto
1. Branch `master`: Branch principal, versão estável.
2. Branch `frontier`: Branch de desenvolvimento, versão de teste.
### V: Referências para Aprendizado
```
O código referenciou muitos projetos excelentes, em ordem aleatória:
# Tsinghua ChatGLM2-6B:
https://github.com/THUDM/ChatGLM2-6B
# Tsinghua JittorLLMs:
https://github.com/Jittor/JittorLLMs
# ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Edge-GPT:
https://github.com/acheong08/EdgeGPT
# ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Oobabooga instalador com um clique:
https://github.com/oobabooga/instaladores-de-um-clique
# Mais:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,360 +0,0 @@
> **Примечание**
>
> Этот README был переведен с помощью GPT (реализовано с помощью плагина этого проекта) и не может быть полностью надежным, пожалуйста, внимательно проверьте результаты перевода.
>
> 7 ноября 2023 года: При установке зависимостей, пожалуйста, выберите **указанные версии** из `requirements.txt`. Команда установки: `pip install -r requirements.txt`.
# <div align=center><img src="logo.png" width="40"> GPT Academic (GPT Академический)</div>
**Если вам нравится этот проект, пожалуйста, поставьте звезду; если у вас есть удобные горячие клавиши или плагины, приветствуются pull requests!**
Чтобы перевести этот проект на произвольный язык с помощью GPT, прочтите и выполните [`multi_language.py`](multi_language.py) (экспериментально).
> **Примечание**
>
> 1. Пожалуйста, обратите внимание, что только плагины (кнопки), выделенные **жирным шрифтом**, поддерживают чтение файлов, некоторые плагины находятся в выпадающем меню **плагинов**. Кроме того, мы с радостью приветствуем и обрабатываем PR для любых новых плагинов с **наивысшим приоритетом**.
>
> 2. Функции каждого файла в этом проекте подробно описаны в [отчете о самостоятельном анализе проекта `self_analysis.md`](https://github.com/binary-husky/gpt_academic/wiki/GPTAcademic项目自译解报告). С каждым новым релизом вы также можете в любое время нажать на соответствующий функциональный плагин, вызвать GPT для повторной генерации сводного отчета о самоанализе проекта. Часто задаваемые вопросы [`wiki`](https://github.com/binary-husky/gpt_academic/wiki) | [обычные методы установки](#installation) | [скрипт одношаговой установки](https://github.com/binary-husky/gpt_academic/releases) | [инструкции по настройке](https://github.com/binary-husky/gpt_academic/wiki/项目配置说明).
>
> 3. Этот проект совместим и настоятельно рекомендуется использование китайской NLP-модели ChatGLM и других моделей больших языков производства Китая. Поддерживает одновременное использование нескольких ключей API, которые можно указать в конфигурационном файле, например, `API_KEY="openai-key1,openai-key2,azure-key3,api2d-key4"`. Если нужно временно заменить `API_KEY`, введите временный `API_KEY` в окне ввода и нажмите Enter для его подтверждения.
<div align="center">
Функции (⭐= Недавно добавленные функции) | Описание
--- | ---
⭐[Подключение новой модели](https://github.com/binary-husky/gpt_academic/wiki/%E5%A6%82%E4%BD%95%E5%88%87%E6%8D%A2%E6%A8%A1%E5%9E%8B) | Baidu [QianFan](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu) и WenxinYiYan, [TongYiQianWen](https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary), Shanghai AI-Lab [ShuSheng](https://github.com/InternLM/InternLM), Xunfei [XingHuo](https://xinghuo.xfyun.cn/), [LLaMa2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), ZhiPu API, DALLE3
Улучшение, перевод, объяснение кода | Одним нажатием выполнить поиск синтаксических ошибок в научных статьях, переводить, объяснять код
[Настройка горячих клавиш](https://www.bilibili.com/video/BV14s4y1E7jN) | Поддержка настройки горячих клавиш
Модульный дизайн | Поддержка настраиваемых мощных [плагинов](https://github.com/binary-husky/gpt_academic/tree/master/crazy_functions), плагины поддерживают [горячую замену](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97)
[Профилирование кода](https://www.bilibili.com/video/BV1cj411A7VW) | [Плагин] Одним нажатием можно профилировать дерево проекта Python/C/C++/Java/Lua/... или [проанализировать самого себя](https://www.bilibili.com/video/BV1cj411A7VW)
Просмотр статей, перевод статей | [Плагин] Одним нажатием прочитать полный текст статьи в формате LaTeX/PDF и сгенерировать аннотацию
Перевод LaTeX статей, [улучшение](https://www.bilibili.com/video/BV1FT411H7c5/)| [Плагин] Одним нажатием перевести или улучшить статьи в формате LaTeX
Генерация пакетного комментария | [Плагин] Одним нажатием сгенерировать многострочный комментарий к функции
Перевод Markdown на английский и китайский | [Плагин] Вы видели документацию на сверху на пяти языках? [README](https://github.com/binary-husky/gpt_academic/blob/master/docs/README_EN.md)`
Анализ и создание отчета в формате чата | [Плагин] Автоматически генерируйте сводный отчет после выполнения
Функция перевода полноценной PDF статьи | [Плагин] Изъять название и аннотацию статьи из PDF + переводить полный текст (многопоточно)
[Arxiv помощник](https://www.bilibili.com/video/BV1LM4y1279X) | [Плагин] Просто введите URL статьи на arXiv, чтобы одним нажатием выполнить перевод аннотации + загрузить PDF
Одним кликом проверить статью на LaTeX | [Плагин] Проверка грамматики и правописания статьи LaTeX, добавление PDF в качестве справки
[Помощник Google Scholar](https://www.bilibili.com/video/BV19L411U7ia) | [Плагин] Создайте "related works" с помощью Google Scholar URL по вашему выбору.
Агрегирование интернет-информации + GPT | [Плагин] [GPT получает информацию из интернета](https://www.bilibili.com/video/BV1om4y127ck) и отвечает на вопросы, чтобы информация никогда не устаревала
⭐Точный перевод статей Arxiv ([Docker](https://github.com/binary-husky/gpt_academic/pkgs/container/gpt_academic_with_latex)) | [Плагин] [Переводите статьи Arxiv наивысшего качества](https://www.bilibili.com/video/BV1dz4y1v77A/) всего одним нажатием. Сейчас это лучший инструмент для перевода научных статей
⭐[Реальное время ввода голосом](https://github.com/binary-husky/gpt_academic/blob/master/docs/use_audio.md) | [Плагин] Асинхронно [слушать аудио](https://www.bilibili.com/video/BV1AV4y187Uy/), автоматически разбивать на предложения, автоматически находить момент для ответа
Отображение формул/изображений/таблиц | Поддержка отображения формул в форме [tex и рендеринга](https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png), поддержка подсветки синтаксиса формул и кода
⭐Плагин AutoGen для множества интеллектуальных агентов | [Плагин] Используйте Microsoft AutoGen для исследования возможностей интеллектуального всплытия нескольких агентов!
Запуск [темной темы](https://github.com/binary-husky/gpt_academic/issues/173) | Добавьте `/?__theme=dark` в конец URL в браузере, чтобы переключиться на темную тему
[Поддержка нескольких моделей LLM](https://www.bilibili.com/video/BV1wT411p7yf) | Быть обслуживаемым GPT3.5, GPT4, [ChatGLM2 из Цинхуа](https://github.com/THUDM/ChatGLM2-6B), [MOSS из Фуданя](https://github.com/OpenLMLab/MOSS) одновременно должно быть очень приятно, не так ли?
⭐Модель ChatGLM2 Fine-tune | Поддержка загрузки модели ChatGLM2 Fine-tune, предоставляет вспомогательный плагин ChatGLM2 Fine-tune
Больше моделей LLM, поддержка [развертывания huggingface](https://huggingface.co/spaces/qingxu98/gpt-academic) | Включение интерфейса Newbing (новый Bing), введение поддержки китайских [Jittorllms](https://github.com/Jittor/JittorLLMs) для поддержки [LLaMA](https://github.com/facebookresearch/llama) и [Panguα](https://openi.org.cn/pangu/)
⭐Пакет pip [void-terminal](https://github.com/binary-husky/void-terminal) | Без GUI вызывайте все функциональные плагины этого проекта прямо из Python (разрабатывается)
⭐Плагин пустого терминала | [Плагин] Используя естественный язык, напрямую распоряжайтесь другими плагинами этого проекта
Больше новых функций (генерация изображений и т. д.) ... | Смотрите в конце этого документа ...
</div>
- Новый интерфейс (изменение опции LAYOUT в `config.py` позволяет переключиться между "расположением слева и справа" и "расположением сверху и снизу")
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/d81137c3-affd-4cd1-bb5e-b15610389762" width="700" >
</div>
- Все кнопки генерируются динамически на основе `functional.py` и могут быть свободно дополнены, освобождая буфер обмена
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231975334-b4788e91-4887-412f-8b43-2b9c5f41d248.gif" width="700" >
</div>
- Улучшение/исправление
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/231980294-f374bdcb-3309-4560-b424-38ef39f04ebd.gif" width="700" >
</div>
- Если вывод содержит формулы, они отображаются одновременно в виде tex и отрендеренного вида для удобства копирования и чтения
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/230598842-1d7fcddd-815d-40ee-af60-baf488a199df.png" width="700" >
</div>
- Не хочешь смотреть код проекта? Весь проект сразу в уста ChatGPT
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" width="700" >
</div>
- Смешанное использование нескольких больших языковых моделей (ChatGLM + OpenAI-GPT3.5 + [API2D](https://api2d.com/)-GPT4)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/232537274-deca0563-7aa6-4b5d-94a2-b7c453c47794.png" width="700" >
</div>
# Установка
### Метод установки I: Прямой запуск (Windows, Linux или MacOS)
1. Скачайте проект
```sh
git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
cd gpt_academic
```
2. Настройте API_KEY
В файле `config.py` настройте API KEY и другие настройки, [нажмите здесь, чтобы узнать способы настройки в специальных сетевых средах](https://github.com/binary-husky/gpt_academic/issues/1). [Инструкции по настройке проекта](https://github.com/binary-husky/gpt_academic/wiki/Сonfig-Instructions).
「 Программа будет в первую очередь проверять наличие файла config_private.py с приватными настройками и заменять соответствующие настройки в файле config.py на те, которые указаны в файле config_private.py. Если вы понимаете эту логику, мы настоятельно рекомендуем вам создать новый файл настроек config_private.py рядом с файлом config.py и скопировать туда настройки из config.py (только те, которые вы изменяли). 」
「 Поддерживается настроить проект с помощью `переменных среды`. Пример настройки переменных среды можно найти в файле docker-compose.yml или на нашей [странице вики](https://github.com/binary-husky/gpt_academic/wiki/Сonfig-Instructions). Приоритет настроек: `переменные среды` > `config_private.py` > `config.py`. 」
3. Установите зависимости
```sh
# (Выбор I: Если знакомы с Python, python>=3.9). Примечание: используйте официальный pip-репозиторий или пакетный репозиторий Alibaba, временный способ изменить источник: python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python -m pip install -r requirements.txt
# (Выбор II: Используйте Anaconda). Шаги аналогичны (https://www.bilibili.com/video/BV1rc411W7Dr)
conda create -n gptac_venv python=3.11 # Создание среды Anaconda
conda activate gptac_venv # Активация среды Anaconda
python -m pip install -r requirements.txt # Здесь все тоже самое, что и с установкой для pip
```
<details><summary>Если вам нужна поддержка ChatGLM2 от Цинхуа/MOSS от Фуданя/Раннера RWKV как бэкенда, нажмите, чтобы развернуть</summary>
<p>
【Опциональный шаг】Если вам нужна поддержка ChatGLM2 от Цинхуа/Сервиса MOSS от Фуданя, вам понадобится дополнительно установить дополнительные зависимости (предполагается, что вы знакомы с Python + PyTorch + у вас достаточно мощный компьютер):
```sh
# 【Опциональный шаг I】Поддержка ChatGLM2 от Цинхуа. Примечание к ChatGLM от Цинхуа: Если вы столкнулись с ошибкой "Call ChatGLM fail 不能正常加载ChatGLM的参数", обратите внимание на следующее: 1: По умолчанию установлена версия torch+cpu, для использования cuda необходимо удалить torch и установить версию torch+cuda; 2: Если вы не можете загрузить модель из-за недостаточной мощности компьютера, вы можете изменить точность модели в файле request_llm/bridge_chatglm.py, заменив AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) на AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
python -m pip install -r request_llms/requirements_chatglm.txt
# 【Опциональный шаг II】Поддержка MOSS от Фуданя
python -m pip install -r request_llms/requirements_moss.txt
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # Обратите внимание, что когда вы запускаете эту команду, вы должны находиться в корневой папке проекта
# 【Опциональный шаг III】Поддержка RWKV Runner
Смотрите вики: https://github.com/binary-husky/gpt_academic/wiki/Поддержка-RWKV-Runner
# 【Опциональный шаг IV】Убедитесь, что config.py содержит все нужные вам модели. Пример:
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
```
</p>
</details>
4. Запустите программу
```sh
python main.py
```
### Метод установки II: Используйте Docker
0. Установка всех возможностей проекта (это большой образ с поддержкой cuda и LaTeX; но если у вас медленный интернет или маленький жесткий диск, мы не рекомендуем использовать этот метод).
[![fullcapacity](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-all-capacity.yml)
``` sh
# Измените файл docker-compose.yml, сохраните метод 0 и удалите другие методы. Затем запустите:
docker-compose up
```
1. Чат GPT + 文心一言 + Spark и другие онлайн-модели (рекомендуется для большинства пользователей)
[![basic](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-without-local-llms.yml)
[![basiclatex](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-latex.yml)
[![basicaudio](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-audio-assistant.yml)
``` sh
# Измените файл docker-compose.yml, сохраните метод 1 и удалите другие методы. Затем запустите:
docker-compose up
```
P.S. Если вам нужен функционал, связанный с LaTeX, обратитесь к разделу Wiki. Кроме того, вы также можете использовать схему 4 или схему 0 для доступа к функционалу LaTeX.
2. Чат GPT + ChatGLM2 + MOSS + LLAMA2 + TakyiQ & Другие попытки ввести в обиход
[![chatglm](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml/badge.svg?branch=master)](https://github.com/binary-husky/gpt_academic/actions/workflows/build-with-chatglm.yml)
``` sh
# Измените файл docker-compose.yml, сохраните метод 2 и удалите другие методы. Затем запустите:
docker-compose up
```
### Метод установки III: Другие способы развертывания
1. **Скрипты запуска одним нажатием для Windows**.
Пользователи Windows, не знакомые с окружением Python, могут загрузить одну из версий в разделе [Релизы](https://github.com/binary-husky/gpt_academic/releases) для установки версии без локальных моделей.
Скрипты взяты из вкладки [oobabooga](https://github.com/oobabooga/one-click-installers).
2. Использование сторонних API, Azure и т. д., см. страницу [вики](https://github.com/binary-husky/gpt_academic/wiki/Сonfig-Instructions)
3. Руководство по развертыванию на удаленном сервере.
Пожалуйста, посетите [вики-страницу развертывания на облачном сервере](https://github.com/binary-husky/gpt_academic/wiki/Руководство-по-развертыванию-на-облаке).
4. Некоторые новые платформы или методы развертывания
- Использование Sealos [для однократного развертывания](https://github.com/binary-husky/gpt_academic/issues/993)
- Использование WSL2 (Windows Subsystem for Linux). См. [Руководство развертывания-2](https://github.com/binary-husky/gpt_academic/wiki/Using-WSL2-for-deployment)
- Как запустить на вложенном URL-адресе (например, `http://localhost/subpath`). См. [Инструкции по работе с FastAPI](docs/WithFastapi.md)
# Расширенное использование
### I: Пользовательские удобные кнопки (академические сочетания клавиш)
Откройте файл `core_functional.py` в любом текстовом редакторе и добавьте следующие записи, затем перезапустите программу. (Если кнопка уже существует, то префикс и суффикс поддерживают горячую замену без перезапуска программы.)
Например,
```
"Супер-англо-русский перевод": {
# Префикс, который будет добавлен перед вашим вводом. Например, используется для описания вашего запроса, например, перевода, объяснения кода, редактирования и т.д.
"Префикс": "Пожалуйста, переведите следующий абзац на русский язык, а затем покажите каждый термин на экране с помощью таблицы Markdown:\n\n",
# Суффикс, который будет добавлен после вашего ввода. Например, можно использовать с префиксом, чтобы заключить ваш ввод в кавычки.
"Суффикс": "",
},
```
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226899272-477c2134-ed71-4326-810c-29891fe4a508.png" width="500" >
</div>
### II: Пользовательские функциональные плагины
Создавайте мощные функциональные плагины для выполнения любых задач, которые вам нужны и которых вы и не можете себе представить.
Создание плагина для этого проекта и его отладка являются простыми задачами, и если у вас есть базовые знания Python, вы можете реализовать свой собственный функциональный плагин, используя наши предоставленные шаблоны.
Дополнительную информацию см. в [Руководстве по функциональным плагинам](https://github.com/binary-husky/gpt_academic/wiki/%E5%87%BD%E6%95%B0%E6%8F%92%E4%BB%B6%E6%8C%87%E5%8D%97).
# Обновления
### I: Динамические
1. Функция сохранения диалога. Вызовите "Сохранить текущий диалог" в области функциональных плагинов, чтобы сохранить текущий диалог в виде читаемого и восстанавливаемого html-файла.
Кроме того, можно использовать "Загрузить архивный файл диалога" в области функциональных плагинов (выпадающее меню), чтобы восстановить предыдущий разговор.
Подсказка: если не указывать файл и просто щелкнуть "Загрузить архивный файл диалога", можно просмотреть кэш сохраненных html-архивов.
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/235222390-24a9acc0-680f-49f5-bc81-2f3161f1e049.png" width="500" >
</div>
2. ⭐Перевод Latex/Arxiv статей⭐
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/002a1a75-ace0-4e6a-94e2-ec1406a746f1" height="250" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/9fdcc391-f823-464f-9322-f8719677043b" height="250" >
</div>
3. Void Terminal (понимание пользовательских намерений из естественного языка и автоматическое вызов других плагинов)
- Шаг 1: Введите "Пожалуйста, вызовите плагин для перевода PDF-статьи, адрес которой https://openreview.net/pdf?id=rJl0r3R9KX".
- Шаг 2: Нажмите "Void Terminal".
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/66f1b044-e9ff-4eed-9126-5d4f3668f1ed" width="500" >
</div>
4. Модульный дизайн функционала, позволяющий реализовать мощные функции с помощью простых интерфейсов
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/229288270-093643c1-0018-487a-81e6-1d7809b6e90f.png" height="400" >
<img src="https://user-images.githubusercontent.com/96192199/227504931-19955f78-45cd-4d1c-adac-e71e50957915.png" height="400" >
</div>
5. Перевод и анализ других открытых проектов
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/226935232-6b6a73ce-8900-4aee-93f9-733c7e6fef53.png" height="250" >
<img src="https://user-images.githubusercontent.com/96192199/226969067-968a27c1-1b9c-486b-8b81-ab2de8d3f88a.png" height="250" >
</div>
6. Функциональность для украшения[meme](https://github.com/fghrsh/live2d_demo) (по умолчанию отключена, требуется изменение файла `config.py`)
<div align="center">
<img src="https://user-images.githubusercontent.com/96192199/236432361-67739153-73e8-43fe-8111-b61296edabd9.png" width="500" >
</div>
7. Генерация изображений с помощью OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/bc7ab234-ad90-48a0-8d62-f703d9e74665" width="500" >
</div>
8. Анализ и обобщение аудио с помощью OpenAI
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/709ccf95-3aee-498a-934a-e1c22d3d5d5b" width="500" >
</div>
9. Проверка и исправление ошибок во всем тексте LaTeX
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/651ccd98-02c9-4464-91e1-77a6b7d1b033" height="200" > ===>
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/476f66d9-7716-4537-b5c1-735372c25adb" height="200">
</div>
10. Изменение языка и темы
<div align="center">
<img src="https://github.com/binary-husky/gpt_academic/assets/96192199/b6799499-b6fb-4f0c-9c8e-1b441872f4e8" width="500" >
</div>
### II: Версии:
- Версия 3.70 (в планах): Оптимизация темы AutoGen и разработка ряда дополнительных плагинов
- Версия 3.60: Внедрение AutoGen в качестве фундамента нового поколения плагинов
- Версия 3.57: Поддержка GLM3, Starfire v3, Wenxin One Word v4, исправление ошибок при совместном использовании локальной модели
- Версия 3.56: Поддержка добавления дополнительных функциональных кнопок в реальном времени, новая страница отчетов в формате PDF
- Версия 3.55: Переработка пользовательского интерфейса, внедрение плавающего окна и панели меню
- Версия 3.54: Добавлен интерпретатор кода (Code Interpreter) (в разработке)
- Версия 3.53: Динамический выбор различных тем интерфейса, повышение стабильности и решение проблемы конфликтов между несколькими пользователями
- Версия 3.50: Использование естественного языка для вызова всех функциональных плагинов проекта (Void Terminal), поддержка категоризации плагинов, улучшение пользовательского интерфейса, разработка новых тем
- Версия 3.49: Поддержка платформы Baidu Qianfan и Wenxin One Word
- Версия 3.48: Поддержка Ali Dharma Institute, Shanghai AI-Lab Scholar, Xunfei Starfire
- Версия 3.46: Поддержка реального голосового диалога с полной автоматизацией
- Версия 3.45: Поддержка настраиваемой модели ChatGLM2
- Версия 3.44: Официальная поддержка Azure, улучшение удобства пользовательского интерфейса
- Версия 3.4: +Перевод полных текстов PDF, +корректировка латексных документов
- Версия 3.3: +Интернет-информационные функции
- Версия 3.2: Поддержка дополнительных параметров в функциональных плагинах (функция сохранения диалога, интерпретация кода на любом языке + одновременный вопрос о любом комбинированном LLM)
- Версия 3.1: Поддержка одновременного обращения к нескольким моделям gpt! Поддержка API2D, поддержка равномерной нагрузки нескольких api-ключей
- Версия 3.0: Поддержка chatglm и других небольших моделей llm
- Версия 2.6: Переработка структуры плагинов для повышения интерактивности, добавление дополнительных плагинов
- Версия 2.5: Автоматическое обновление, решение проблемы с длиной текста и переполнением токенов при обработке текста
- Версия 2.4: (1) Добавление функции полного перевода PDF; (2) Добавление функции изменения позиции объекта ввода; (3) Добавление функции вертикального размещения; (4) Оптимизация многопоточных функциональных плагинов.
- Версия 2.3: Улучшение интерактивности многопоточности
- Версия 2.2: Поддержка живой перезагрузки функциональных плагинов
- Версия 2.1: Складываемый макет
- Версия 2.0: Введение модульных функциональных плагинов
- Версия 1.0: Базовые функции
GPT Academic Группа QQ разработчиков: `610599535`
- Известные проблемы
- Некоторые расширения для браузера могут мешать работе пользовательского интерфейса этого программного обеспечения
- У официального Gradio есть много проблем совместимости, поэтому обязательно установите Gradio с помощью `requirement.txt`
### III: Темы
Вы можете изменить тему путем изменения опции `THEME` (config.py)
1. `Chuanhu-Small-and-Beautiful` [ссылка](https://github.com/GaiZhenbiao/ChuanhuChatGPT/)
### IV: Ветви разработки этого проекта
1. Ветка `master`: Основная ветка, стабильная версия
2. Ветвь `frontier`: Ветвь разработки, версия для тестирования
### V: Справочники и обучение
```
В коде использовались многие функции, представленные в других отличных проектах, поэтому их порядок не имеет значения:
# ChatGLM2-6B от Тиньхуа:
https://github.com/THUDM/ChatGLM2-6B
# Линейные модели с ограниченной памятью от Тиньхуа:
https://github.com/Jittor/JittorLLMs
# ChatPaper:
https://github.com/kaixindelele/ChatPaper
# Edge-GPT:
https://github.com/acheong08/EdgeGPT
# ChuanhuChatGPT:
https://github.com/GaiZhenbiao/ChuanhuChatGPT
# Установщик с одним щелчком Oobabooga:
https://github.com/oobabooga/one-click-installers
# Больше:
https://github.com/gradio-app/gradio
https://github.com/fghrsh/live2d_demo

查看文件

@@ -1,42 +0,0 @@
# Running with fastapi
We currently support fastapi in order to solve sub-path deploy issue.
1. change CUSTOM_PATH setting in `config.py`
```sh
nano config.py
```
2. Edit main.py
```diff
auto_opentab_delay()
- demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
+ demo.queue(concurrency_count=CONCURRENT_COUNT)
- # 如果需要在二级路径下运行
- # CUSTOM_PATH = get_conf('CUSTOM_PATH')
- # if CUSTOM_PATH != "/":
- # from toolbox import run_gradio_in_subpath
- # run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
- # else:
- # demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
+ 如果需要在二级路径下运行
+ CUSTOM_PATH = get_conf('CUSTOM_PATH')
+ if CUSTOM_PATH != "/":
+ from toolbox import run_gradio_in_subpath
+ run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
+ else:
+ demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
if __name__ == "__main__":
main()
```
3. Go!
```sh
python main.py
```

二进制
docs/demo.jpg

二进制文件未显示。

之前

宽度:  |  高度:  |  大小: 262 KiB

二进制
docs/demo2.jpg

二进制文件未显示。

之前

宽度:  |  高度:  |  大小: 264 KiB

查看文件

@@ -1,189 +0,0 @@
# 实现带二级菜单的插件
## 一、如何写带有二级菜单的插件
1. 声明一个 `Class`,继承父类 `GptAcademicPluginTemplate`
```python
from crazy_functions.plugin_template.plugin_class_template import GptAcademicPluginTemplate
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
class Demo_Wrap(GptAcademicPluginTemplate):
def __init__(self): ...
```
2. 声明二级菜单中需要的变量,覆盖父类的`define_arg_selection_menu`函数。
```python
class Demo_Wrap(GptAcademicPluginTemplate):
...
def define_arg_selection_menu(self):
"""
定义插件的二级选项菜单
第一个参数,名称`main_input`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
第二个参数,名称`advanced_arg`,参数`type`声明这是一个文本框,文本框上方显示`title`,文本框内部显示`description`,`default_value`为默认值;
第三个参数,名称`allow_cache`,参数`type`声明这是一个下拉菜单,下拉菜单上方显示`title`+`description`,下拉菜单的选项为`options`,`default_value`为下拉菜单默认值;
"""
gui_definition = {
"main_input":
ArgProperty(title="ArxivID", description="输入Arxiv的ID或者网址", default_value="", type="string").model_dump_json(),
"advanced_arg":
ArgProperty(title="额外的翻译提示词",
description=r"如果有必要, 请在此处给出自定义翻译命令",
default_value="", type="string").model_dump_json(),
"allow_cache":
ArgProperty(title="是否允许从缓存中调取结果", options=["允许缓存", "从头执行"], default_value="允许缓存", description="无", type="dropdown").model_dump_json(),
}
return gui_definition
...
```
> [!IMPORTANT]
>
> ArgProperty 中每个条目对应一个参数,`type == "string"`时,使用文本块,`type == dropdown`时,使用下拉菜单。
>
> 注意:`main_input` 和 `advanced_arg`是两个特殊的参数。`main_input`会自动与界面右上角的`输入区`进行同步,而`advanced_arg`会自动与界面右下角的`高级参数输入区`同步。除此之外,参数名称可以任意选取。其他细节详见`crazy_functions/plugin_template/plugin_class_template.py`。
3. 编写插件程序,覆盖父类的`execute`函数。
例如:
```python
class Demo_Wrap(GptAcademicPluginTemplate):
...
...
def execute(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
"""
执行插件
plugin_kwargs字典中会包含用户的选择,与上述 `define_arg_selection_menu` 一一对应
"""
allow_cache = plugin_kwargs["allow_cache"]
advanced_arg = plugin_kwargs["advanced_arg"]
if allow_cache == "从头执行": plugin_kwargs["advanced_arg"] = "--no-cache " + plugin_kwargs["advanced_arg"]
yield from Latex翻译中文并重新编译PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)
```
4. 注册插件
将以下条目插入`crazy_functional.py`即可。注意,与旧插件不同的是,`Function`键值应该为None,而`Class`键值为上述插件的类名称(`Demo_Wrap`)。
```
"新插件": {
"Group": "学术",
"Color": "stop",
"AsButton": True,
"Info": "插件说明",
"Function": None,
"Class": Demo_Wrap,
},
```
5. 已经结束了,启动程序测试吧~
## 二、背后的原理需要JavaScript的前置知识
### (I) 首先介绍三个Gradio官方没有的重要前端函数
主javascript程序`common.js`中有三个Gradio官方没有的重要API
1. `get_data_from_gradio_component`
这个函数可以获取任意gradio组件的当前值,例如textbox中的字符,dropdown中的当前选项,chatbot当前的对话等等。调用方法举例
```javascript
// 获取当前的对话
let chatbot = await get_data_from_gradio_component('gpt-chatbot');
```
2. `get_gradio_component`
有时候我们不仅需要gradio组件的当前值,还需要它的label值、是否隐藏、下拉菜单其他可选选项等等,而通过这个函数可以直接获取这个组件的句柄。举例
```javascript
// 获取下拉菜单组件的句柄
var model_sel = await get_gradio_component("elem_model_sel");
// 获取它的所有属性,包括其所有可选选项
console.log(model_sel.props)
```
3. `push_data_to_gradio_component`
这个函数可以将数据推回gradio组件,例如textbox中的字符,dropdown中的当前选项等等。调用方法举例
```javascript
// 修改一个按钮上面的文本
push_data_to_gradio_component("btnName", "gradio_element_id", "string");
// 隐藏一个组件
push_data_to_gradio_component({ visible: false, __type__: 'update' }, "plugin_arg_menu", "obj");
// 修改组件label
push_data_to_gradio_component({ label: '新label的值', __type__: 'update' }, "gpt-chatbot", "obj")
// 第一个参数是value,
// - 可以是字符串调整textbox的文本,按钮的文本
// - 还可以是 { visible: false, __type__: 'update' } 这样的字典调整visible, label, choices
// 第二个参数是elem_id
// 第三个参数是"string" 或者 "obj"
```
### (II) 从点击插件到执行插件的逻辑过程
简述程序启动时把每个插件的二级菜单编码为BASE64,存储在用户的浏览器前端,用户调用对应功能时,会按照插件的BASE64编码,将平时隐藏的菜单有选择性地显示出来。
1. 启动阶段(主函数 `main.py` 中,遍历每个插件,生成二级菜单的BASE64编码,存入变量`register_advanced_plugin_init_code_arr`。
```python
def get_js_code_for_generating_menu(self, btnName):
define_arg_selection = self.define_arg_selection_menu()
DEFINE_ARG_INPUT_INTERFACE = json.dumps(define_arg_selection)
return base64.b64encode(DEFINE_ARG_INPUT_INTERFACE.encode('utf-8')).decode('utf-8')
```
2. 用户加载阶段主javascript程序`common.js`中),浏览器加载`register_advanced_plugin_init_code_arr`,存入本地的字典`advanced_plugin_init_code_lib`
```javascript
advanced_plugin_init_code_lib = {}
function register_advanced_plugin_init_code(key, code){
advanced_plugin_init_code_lib[key] = code;
}
```
3. 用户点击插件按钮(主函数 `main.py` 中时,仅执行以下javascript代码,唤醒隐藏的二级菜单生成菜单的代码在`common.js`中的`generate_menu`函数上):
```javascript
// 生成高级插件的选择菜单
function run_advanced_plugin_launch_code(key){
generate_menu(advanced_plugin_init_code_lib[key], key);
}
function on_flex_button_click(key){
run_advanced_plugin_launch_code(key);
}
```
```python
click_handle = plugins[k]["Button"].click(None, inputs=[], outputs=None, _js=f"""()=>run_advanced_plugin_launch_code("{k}")""")
```
4. 当用户点击二级菜单的执行键时,通过javascript脚本模拟点击一个隐藏按钮,触发后续程序`common.js`中的`execute_current_pop_up_plugin`,会把二级菜单中的参数缓存到`invisible_current_pop_up_plugin_arg_final`,然后模拟点击`invisible_callback_btn_for_plugin_exe`按钮)。隐藏按钮的定义在(主函数 `main.py` ),该隐藏按钮会最终触发`route_switchy_bt_with_arg`函数(定义于`themes/gui_advanced_plugin_class.py`
```python
click_handle_ng = new_plugin_callback.click(route_switchy_bt_with_arg, [
gr.State(["new_plugin_callback", "usr_confirmed_arg"] + input_combo_order),
new_plugin_callback, usr_confirmed_arg, *input_combo
], output_combo)
```
5. 最后,`route_switchy_bt_with_arg`中,会搜集所有用户参数,统一集中到`plugin_kwargs`参数中,并执行对应插件的`execute`函数。

查看文件

@@ -1,378 +0,0 @@
# chatgpt-academic项目自译解报告
Author补充以下分析均由本项目调用ChatGPT一键生成,如果有不准确的地方,全怪GPT😄
| 文件名 | 功能描述 |
| ------ | ------ |
| check_proxy.py | 检查代理有效性及地理位置 |
| colorful.py | 控制台打印彩色文字 |
| config.py | 配置和参数设置 |
| config_private.py | 私人配置和参数设置 |
| core_functional.py | 核心函数和参数设置 |
| crazy_functional.py | 高级功能插件集合 |
| main.py | 一个 Chatbot 程序,提供各种学术翻译、文本处理和其他查询服务 |
| multi_language.py | 识别和翻译不同语言 |
| theme.py | 自定义 gradio 应用程序主题 |
| toolbox.py | 工具类库,用于协助实现各种功能 |
| crazy_functions\crazy_functions_test.py | 测试 crazy_functions 中的各种函数 |
| crazy_functions\crazy_utils.py | 工具函数,用于字符串处理、异常检测、Markdown 格式转换等 |
| crazy_functions\Latex全文润色.py | 对整个 Latex 项目进行润色和纠错 |
| crazy_functions\Latex全文翻译.py | 对整个 Latex 项目进行翻译 |
| crazy_functions\\_\_init\_\_.py | 模块初始化文件,标识 `crazy_functions` 是一个包 |
| crazy_functions\下载arxiv论文翻译摘要.py | 下载 `arxiv` 论文的 PDF 文件,并提取摘要和翻译 |
| crazy_functions\代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
| crazy_functions\图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
| crazy_functions\Conversation_To_File.py | 将每次对话记录写入Markdown格式的文件中 |
| crazy_functions\总结word文档.py | 对输入的word文档进行摘要生成 |
| crazy_functions\总结音视频.py | 对输入的音视频文件进行摘要生成 |
| crazy_functions\Markdown_Translate.py | 将指定目录下的Markdown文件进行中英文翻译 |
| crazy_functions\批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
| crazy_functions\批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
| crazy_functions\PDF_Translate.py | 将指定目录下的PDF文件进行中英文翻译 |
| crazy_functions\理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
| crazy_functions\生成函数注释.py | 自动生成Python函数的注释 |
| crazy_functions\联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
| crazy_functions\解析JupyterNotebook.py | 对Jupyter Notebook进行代码解析 |
| crazy_functions\解析项目源代码.py | 对指定编程语言的源代码进行解析 |
| crazy_functions\询问多个大语言模型.py | 使用多个大语言模型对输入进行处理和回复 |
| crazy_functions\读文章写摘要.py | 对论文进行解析和全文摘要生成 |
| crazy_functions\谷歌检索小助手.py | 提供谷歌学术搜索页面中相关文章的元数据信息。 |
| crazy_functions\高级功能函数模板.py | 使用Unsplash API发送相关图片以回复用户的输入。 |
| request_llms\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llms\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
| request_llms\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llms\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
| request_llms\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
| request_llms\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llms\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llms\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
| request_llms\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llms\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llms\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llms\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llms\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
| request_llms\test_llms.py | 对llm模型进行单元测试。 |
## 接下来请你逐文件分析下面的工程[0/48] 请对下面的程序文件做一个概述: check_proxy.py
这个文件主要包含了五个函数:
1. `check_proxy`:用于检查代理的有效性及地理位置,输出代理配置和所在地信息。
2. `backup_and_download`:用于备份当前版本并下载新版本。
3. `patch_and_restart`:用于覆盖更新当前版本并重新启动程序。
4. `get_current_version`:用于获取当前程序的版本号。
5. `auto_update`:用于自动检查新版本并提示用户更新。如果用户选择更新,则备份并下载新版本,覆盖更新当前版本并重新启动程序。如果更新失败,则输出错误信息,并不会向用户进行任何提示。
还有一个没有函数名的语句`os.environ['no_proxy'] = '*'`,用于设置环境变量,避免代理网络产生意外污染。
此外,该文件导入了以下三个模块/函数:
- `requests`
- `shutil`
- `os`
## [1/48] 请对下面的程序文件做一个概述: colorful.py
该文件是一个Python脚本,用于在控制台中打印彩色文字。该文件包含了一些函数,用于以不同颜色打印文本。其中,红色、绿色、黄色、蓝色、紫色、靛色分别以函数 print红、print绿、print黄、print蓝、print紫、print靛 的形式定义;亮红色、亮绿色、亮黄色、亮蓝色、亮紫色、亮靛色分别以 print亮红、print亮绿、print亮黄、print亮蓝、print亮紫、print亮靛 的形式定义。它们使用 ANSI Escape Code 将彩色输出从控制台突出显示。如果运行在 Linux 操作系统上,文件所执行的操作被留空;否则,该文件导入了 colorama 库并调用 init() 函数进行初始化。最后,通过一系列条件语句,该文件通过将所有彩色输出函数的名称重新赋值为 print 函数的名称来避免输出文件的颜色问题。
## [2/48] 请对下面的程序文件做一个概述: config.py
这个程序文件是用来配置和参数设置的。它包含了许多设置,如API key,使用代理,线程数,默认模型,超时时间等等。此外,它还包含了一些高级功能,如URL重定向等。这些设置将会影响到程序的行为和性能。
## [3/48] 请对下面的程序文件做一个概述: config_private.py
这个程序文件是一个Python脚本,文件名为config_private.py。其中包含以下变量的赋值
1. API_KEYAPI密钥。
2. USE_PROXY是否应用代理。
3. proxies如果使用代理,则设置代理网络的协议(socks5/http)、地址(localhost)和端口(11284)。
4. DEFAULT_WORKER_NUM默认的工作线程数量。
5. SLACK_CLAUDE_BOT_IDSlack机器人ID。
6. SLACK_CLAUDE_USER_TOKENSlack用户令牌。
## [4/48] 请对下面的程序文件做一个概述: core_functional.py
这是一个名为core_functional.py的源代码文件,该文件定义了一个名为get_core_functions()的函数,该函数返回一个字典,该字典包含了各种学术翻译润色任务的说明和相关参数,如颜色、前缀、后缀等。这些任务包括英语学术润色、中文学术润色、查找语法错误、中译英、学术中英互译、英译中、找图片和参考文献转Bib。其中,一些任务还定义了预处理函数用于处理任务的输入文本。
## [5/48] 请对下面的程序文件做一个概述: crazy_functional.py
此程序文件crazy_functional.py是一个函数插件集合,包含了多个函数插件的定义和调用。这些函数插件旨在提供一些高级功能,如解析项目源代码、批量翻译PDF文档和Latex全文润色等。其中一些插件还支持热更新功能,不需要重启程序即可生效。文件中的函数插件按照功能进行了分类第一组和第二组,并且有不同的调用方式作为按钮或下拉菜单
## [6/48] 请对下面的程序文件做一个概述: main.py
这是一个Python程序文件,文件名为main.py。该程序包含一个名为main的函数,程序会自动运行该函数。程序要求已经安装了gradio、os等模块,会根据配置文件加载代理、model、API Key等信息。程序提供了Chatbot功能,实现了一个对话界面,用户可以输入问题,然后Chatbot可以回答问题或者提供相关功能。程序还包含了基础功能区、函数插件区、更换模型 & SysPrompt & 交互界面布局、备选输入区,用户可以在这些区域选择功能和插件进行使用。程序中还包含了一些辅助模块,如logging等。
## [7/48] 请对下面的程序文件做一个概述: multi_language.py
该文件multi_language.py是用于将项目翻译成不同语言的程序。它包含了以下函数和变量lru_file_cache、contains_chinese、split_list、map_to_json、read_map_from_json、advanced_split、trans、trans_json、step_1_core_key_translate、CACHE_FOLDER、blacklist、LANG、TransPrompt、cached_translation等。注释和文档字符串提供了有关程序的说明,例如如何使用该程序,如何修改“LANG”和“TransPrompt”变量等。
## [8/48] 请对下面的程序文件做一个概述: theme.py
这是一个Python源代码文件,文件名为theme.py。此文件中定义了一个函数adjust_theme,其功能是自定义gradio应用程序的主题,包括调整颜色、字体、阴影等。如果允许,则添加一个看板娘。此文件还包括变量advanced_css,其中包含一些CSS样式,用于高亮显示代码和自定义聊天框样式。此文件还导入了get_conf函数和gradio库。
## [9/48] 请对下面的程序文件做一个概述: toolbox.py
toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和小工具函数,用于协助实现聊天机器人所需的各种功能,包括文本处理、功能插件加载、异常检测、Markdown格式转换,文件读写等等。此外,该库还包含一些依赖、参数配置等信息。该库易于理解和维护。
## [10/48] 请对下面的程序文件做一个概述: crazy_functions\crazy_functions_test.py
这个文件是一个Python测试模块,用于测试crazy_functions中的各种函数插件。这些函数包括解析Python项目源代码、解析Cpp项目源代码、Latex全文润色、Markdown中译英、批量翻译PDF文档、谷歌检索小助手、总结word文档、下载arxiv论文并翻译摘要、联网回答问题、和解析Jupyter Notebooks。对于每个函数插件,都有一个对应的测试函数来进行测试。
## [11/48] 请对下面的程序文件做一个概述: crazy_functions\crazy_utils.py
这个Python文件中包括了两个函数
1. `input_clipping`: 该函数用于裁剪输入文本长度,使其不超过一定的限制。
2. `request_gpt_model_in_new_thread_with_ui_alive`: 该函数用于请求 GPT 模型并保持用户界面的响应,支持多线程和实时更新用户界面。
这两个函数都依赖于从 `toolbox``request_llms` 中导入的一些工具函数。函数的输入和输出有详细的描述文档。
## [12/48] 请对下面的程序文件做一个概述: crazy_functions\Latex全文润色.py
这是一个Python程序文件,文件名为crazy_functions\Latex全文润色.py。文件包含了一个PaperFileGroup类和三个函数Latex英文润色,Latex中文润色和Latex英文纠错。程序使用了字符串处理、正则表达式、文件读写、多线程等技术,主要作用是对整个Latex项目进行润色和纠错。其中润色和纠错涉及到了对文本的语法、清晰度和整体可读性等方面的提升。此外,该程序还参考了第三方库,并封装了一些工具函数。
## [13/48] 请对下面的程序文件做一个概述: crazy_functions\Latex全文翻译.py
这个文件包含两个函数 `Latex英译中``Latex中译英`,它们都会对整个Latex项目进行翻译。这个文件还包含一个类 `PaperFileGroup`,它拥有一个方法 `run_file_split`,用于把长文本文件分成多个短文件。其中使用了工具库 `toolbox` 中的一些函数和从 `request_llms` 中导入了 `model_info`。接下来的函数把文件读取进来,把它们的注释删除,进行分割,并进行翻译。这个文件还包括了一些异常处理和界面更新的操作。
## [14/48] 请对下面的程序文件做一个概述: crazy_functions\__init__.py
这是一个Python模块的初始化文件__init__.py,命名为"crazy_functions"。该模块包含了一些疯狂的函数,但该文件并没有实现这些函数,而是作为一个包package来导入其它的Python模块以实现这些函数。在该文件中,没有定义任何类或函数,它唯一的作用就是标识"crazy_functions"模块是一个包。
## [15/48] 请对下面的程序文件做一个概述: crazy_functions\下载arxiv论文翻译摘要.py
这是一个 Python 程序文件,文件名为 `下载arxiv论文翻译摘要.py`。程序包含多个函数,其中 `下载arxiv论文并翻译摘要` 函数的作用是下载 `arxiv` 论文的 PDF 文件,提取摘要并使用 GPT 对其进行翻译。其他函数包括用于下载 `arxiv` 论文的 `download_arxiv_` 函数和用于获取文章信息的 `get_name` 函数,其中涉及使用第三方库如 requests, BeautifulSoup 等。该文件还包含一些用于调试和存储文件的代码段。
## [16/48] 请对下面的程序文件做一个概述: crazy_functions\代码重写为全英文_多线程.py
该程序文件是一个多线程程序,主要功能是将指定目录下的所有Python代码文件中的中文内容转化为英文,并将转化后的代码存储到一个新的文件中。其中,程序使用了GPT-3等技术进行中文-英文的转化,同时也进行了一些Token限制下的处理,以防止程序发生错误。程序在执行过程中还会输出一些提示信息,并将所有转化过的代码文件存储到指定目录下。在程序执行结束后,还会生成一个任务执行报告,记录程序运行的详细信息。
## [17/48] 请对下面的程序文件做一个概述: crazy_functions\图片生成.py
该程序文件提供了一个用于生成图像的函数`图片生成`。函数实现的过程中,会调用`gen_image`函数来生成图像,并返回图像生成的网址和本地文件地址。函数有多个参数,包括`prompt`(激励文本)、`llm_kwargs`(GPT模型的参数)、`plugin_kwargs`(插件模型的参数)等。函数核心代码使用了`requests`库向OpenAI API请求图像,并做了简单的处理和保存。函数还更新了交互界面,清空聊天历史并显示正在生成图像的消息和最终的图像网址和预览。
## [18/48] 请对下面的程序文件做一个概述: crazy_functions\Conversation_To_File.py
这个文件是名为crazy_functions\Conversation_To_File.py的Python程序文件,包含了4个函数
1. write_chat_to_file(chatbot, history=None, file_name=None)用来将对话记录以Markdown格式写入文件中,并且生成文件名,如果没指定文件名则用当前时间。写入完成后将文件路径打印出来。
2. gen_file_preview(file_name)从传入的文件中读取内容,解析出对话历史记录并返回前100个字符,用于文件预览。
3. read_file_to_chat(chatbot, history, file_name):从传入的文件中读取内容,解析出对话历史记录并更新聊天显示框。
4. Conversation_To_File(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request)一个主要函数,用于保存当前对话记录并提醒用户。如果用户希望加载历史记录,则调用read_file_to_chat()来更新聊天显示框。如果用户希望删除历史记录,调用删除所有本地对话历史记录()函数完成删除操作。
## [19/48] 请对下面的程序文件做一个概述: crazy_functions\总结word文档.py
该程序文件实现了一个总结Word文档的功能,使用Python的docx库读取docx格式的文件,使用pywin32库读取doc格式的文件。程序会先根据传入的txt参数搜索需要处理的文件,并逐个解析其中的内容,将内容拆分为指定长度的文章片段,然后使用另一个程序文件中的request_gpt_model_in_new_thread_with_ui_alive函数进行中文概述。最后将所有的总结结果写入一个文件中,并在界面上进行展示。
## [20/48] 请对下面的程序文件做一个概述: crazy_functions\总结音视频.py
该程序文件包括两个函数split_audio_file()和AnalyAudio(),并且导入了一些必要的库并定义了一些工具函数。split_audio_file用于将音频文件分割成多个时长相等的片段,返回一个包含所有切割音频片段文件路径的列表,而AnalyAudio用来分析音频文件,通过调用whisper模型进行音频转文字并使用GPT模型对音频内容进行概述,最终将所有总结结果写入结果文件中。
## [21/48] 请对下面的程序文件做一个概述: crazy_functions\Markdown_Translate.py
该程序文件名为`Markdown_Translate.py`,包含了以下功能读取Markdown文件,将长文本分离开来,将Markdown文件进行翻译英译中和中译英,整理结果并退出。程序使用了多线程以提高效率。程序使用了`tiktoken`依赖库,可能需要额外安装。文件中还有一些其他的函数和类,但与文件名所描述的功能无关。
## [22/48] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档.py
该文件是一个Python脚本,名为crazy_functions\批量总结PDF文档.py。在导入了一系列库和工具函数后,主要定义了5个函数,其中包括一个错误处理装饰器@CatchException,用于批量总结PDF文档。该函数主要实现对PDF文档的解析,并调用模型生成中英文摘要。
## [23/48] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档pdfminer.py
该程序文件是一个用于批量总结PDF文档的函数插件,使用了pdfminer插件和BeautifulSoup库来提取PDF文档的文本内容,对每个PDF文件分别进行处理并生成中英文摘要。同时,该程序文件还包括一些辅助工具函数和处理异常的装饰器。
## [24/48] 请对下面的程序文件做一个概述: crazy_functions\PDF_Translate.py
这个程序文件是一个Python脚本,文件名为“PDF_Translate.py”。它主要使用了“toolbox”、“request_gpt_model_in_new_thread_with_ui_alive”、“request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency”、“colorful”等Python库和自定义的模块“crazy_utils”的一些函数。程序实现了一个批量翻译PDF文档的功能,可以自动解析PDF文件中的基础信息,递归地切割PDF文件,翻译和处理PDF论文中的所有内容,并生成相应的翻译结果文件包括md文件和html文件。功能比较复杂,其中需要调用多个函数和依赖库,涉及到多线程操作和UI更新。文件中有详细的注释和变量命名,代码比较清晰易读。
## [25/48] 请对下面的程序文件做一个概述: crazy_functions\理解PDF文档内容.py
该程序文件实现了一个名为“理解PDF文档内容”的函数,该函数可以为输入的PDF文件提取摘要以及正文各部分的主要内容,并在提取过程中根据上下文关系进行学术性问题解答。该函数依赖于多个辅助函数和第三方库,并在执行过程中针对可能出现的异常进行了处理。
## [26/48] 请对下面的程序文件做一个概述: crazy_functions\生成函数注释.py
该程序文件是一个Python模块文件,文件名为“生成函数注释.py”,定义了两个函数一个是生成函数注释的主函数“生成函数注释”,另一个是通过装饰器实现异常捕捉的函数“批量生成函数注释”。该程序文件依赖于“toolbox”和本地“crazy_utils”模块,并且在运行时使用了多线程技术和GPT模型来生成注释。函数生成的注释结果使用Markdown表格输出并写入历史记录文件。
## [27/48] 请对下面的程序文件做一个概述: crazy_functions\联网的ChatGPT.py
这是一个名为`联网的ChatGPT.py`的Python程序文件,其中定义了一个函数`连接网络回答问题`。该函数通过爬取搜索引擎的结果和访问网页来综合回答给定的问题,并使用ChatGPT模型完成回答。此外,该文件还包括一些工具函数,例如从网页中抓取文本和使用代理访问网页。
## [28/48] 请对下面的程序文件做一个概述: crazy_functions\解析JupyterNotebook.py
这个程序文件包含了两个函数: `parseNotebook()``解析ipynb文件()`,并且引入了一些工具函数和类。`parseNotebook()`函数将Jupyter Notebook文件解析为文本代码块,`解析ipynb文件()`函数则用于解析多个Jupyter Notebook文件,使用`parseNotebook()`解析每个文件和一些其他的处理。函数中使用了多线程处理输入和输出,并且将结果写入到文件中。
## [29/48] 请对下面的程序文件做一个概述: crazy_functions\解析项目源代码.py
这是一个源代码分析的Python代码文件,其中定义了多个函数,包括解析一个Python项目、解析一个C项目、解析一个C项目的头文件和解析一个Java项目等。其中解析源代码新函数是实际处理源代码分析并生成报告的函数。该函数首先会逐个读取传入的源代码文件,生成对应的请求内容,通过多线程发送到chatgpt进行分析。然后将结果写入文件,并进行汇总分析。最后通过调用update_ui函数刷新界面,完整实现了源代码的分析。
## [30/48] 请对下面的程序文件做一个概述: crazy_functions\询问多个大语言模型.py
该程序文件包含两个函数:同时问询()和同时问询_指定模型(),它们的作用是使用多个大语言模型同时对用户输入进行处理,返回对应模型的回复结果。同时问询()会默认使用ChatGPT和ChatGLM两个模型,而同时问询_指定模型()则可以指定要使用的模型。该程序文件还引用了其他的模块和函数库。
## [31/48] 请对下面的程序文件做一个概述: crazy_functions\读文章写摘要.py
这个程序文件是一个Python模块,文件名为crazy_functions\读文章写摘要.py。该模块包含了两个函数,其中主要函数是"读文章写摘要"函数,其实现了解析给定文件夹中的tex文件,对其中每个文件的内容进行摘要生成,并根据各论文片段的摘要,最终生成全文摘要。第二个函数是"解析Paper"函数,用于解析单篇论文文件。其中用到了一些工具函数和库,如update_ui、CatchException、report_exception、write_results_to_file等。
## [32/48] 请对下面的程序文件做一个概述: crazy_functions\谷歌检索小助手.py
该文件是一个Python模块,文件名为“谷歌检索小助手.py”。该模块包含两个函数,一个是“get_meta_information()”,用于从提供的网址中分析出所有相关的学术文献的元数据信息;另一个是“谷歌检索小助手()”,是主函数,用于分析用户提供的谷歌学术搜索页面中出现的文章,并提取相关信息。其中,“谷歌检索小助手()”函数依赖于“get_meta_information()”函数,并调用了其他一些Python模块,如“arxiv”、“math”、“bs4”等。
## [33/48] 请对下面的程序文件做一个概述: crazy_functions\高级功能函数模板.py
该程序文件定义了一个名为高阶功能模板函数的函数,该函数接受多个参数,包括输入的文本、gpt模型参数、插件模型参数、聊天显示框的句柄、聊天历史等,并利用送出请求,使用 Unsplash API 发送相关图片。其中,为了避免输入溢出,函数会在开始时清空历史。函数也有一些 UI 更新的语句。该程序文件还依赖于其他两个模块CatchException 和 update_ui,以及一个名为 request_gpt_model_in_new_thread_with_ui_alive 的来自 crazy_utils 模块(应该是自定义的工具包)的函数。
## [34/48] 请对下面的程序文件做一个概述: request_llms\bridge_all.py
该文件包含两个函数predict和predict_no_ui_long_connection,用于基于不同的LLM模型进行对话。该文件还包含一个lazyloadTiktoken类和一个LLM_CATCH_EXCEPTION修饰器函数。其中lazyloadTiktoken类用于懒加载模型的tokenizer,LLM_CATCH_EXCEPTION用于错误处理。整个文件还定义了一些全局变量和模型信息字典,用于引用和配置LLM模型。
## [35/48] 请对下面的程序文件做一个概述: request_llms\bridge_chatglm.py
这是一个Python程序文件,名为`bridge_chatglm.py`,其中定义了一个名为`GetGLMHandle`的类和三个方法:`predict_no_ui_long_connection``predict``stream_chat`。该文件依赖于多个Python库,如`transformers``sentencepiece`。该文件实现了一个聊天机器人,使用ChatGLM模型来生成回复,支持单线程和多线程方式。程序启动时需要加载ChatGLM的模型和tokenizer,需要一段时间。在配置文件`config.py`中设置参数会影响模型的内存和显存使用,因此程序可能会导致低配计算机卡死。
## [36/48] 请对下面的程序文件做一个概述: request_llms\bridge_chatgpt.py
该文件为 Python 代码文件,文件名为 request_llms\bridge_chatgpt.py。该代码文件主要提供三个函数predict、predict_no_ui和 predict_no_ui_long_connection,用于发送至 chatGPT 并等待回复,获取输出。该代码文件还包含一些辅助函数,用于处理连接异常、生成 HTTP 请求等。该文件的代码架构清晰,使用了多个自定义函数和模块。
## [37/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_llama.py
该代码文件实现了一个聊天机器人,其中使用了 JittorLLMs 模型。主要包括以下几个部分:
1. GetGLMHandle 类:一个进程类,用于加载 JittorLLMs 模型并接收并处理请求。
2. predict_no_ui_long_connection 函数:一个多线程方法,用于在后台运行聊天机器人。
3. predict 函数:一个单线程方法,用于在前端页面上交互式调用聊天机器人,以获取用户输入并返回相应的回复。
这个文件中还有一些辅助函数和全局变量,例如 importlib、time、threading 等。
## [38/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_pangualpha.py
这个文件是为了实现使用jittorllms一种机器学习模型来进行聊天功能的代码。其中包括了模型加载、模型的参数加载、消息的收发等相关操作。其中使用了多进程和多线程来提高性能和效率。代码中还包括了处理依赖关系的函数和预处理函数等。
## [39/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_rwkv.py
这个文件是一个Python程序,文件名为request_llm\bridge_jittorllms_rwkv.py。它依赖transformers、time、threading、importlib、multiprocessing等库。在文件中,通过定义GetGLMHandle类加载jittorllms模型参数和定义stream_chat方法来实现与jittorllms模型的交互。同时,该文件还定义了predict_no_ui_long_connection和predict方法来处理历史信息、调用jittorllms模型、接收回复信息并输出结果。
## [40/48] 请对下面的程序文件做一个概述: request_llms\bridge_moss.py
该文件为一个Python源代码文件,文件名为 request_llms\bridge_moss.py。代码定义了一个 GetGLMHandle 类和两个函数 predict_no_ui_long_connection 和 predict。
GetGLMHandle 类继承自Process类多进程,主要功能是启动一个子进程并加载 MOSS 模型参数,通过 Pipe 进行主子进程的通信。该类还定义了 check_dependency、moss_init、run 和 stream_chat 等方法,其中 check_dependency 和 moss_init 是子进程的初始化方法,run 是子进程运行方法,stream_chat 实现了主进程和子进程的交互过程。
函数 predict_no_ui_long_connection 是多线程方法,调用 GetGLMHandle 类加载 MOSS 参数后使用 stream_chat 实现主进程和子进程的交互过程。
函数 predict 是单线程方法,通过调用 update_ui 将交互过程中 MOSS 的回复实时更新到UIUser Interface中,并执行一个 named functionadditional_fn指定的函数对输入进行预处理。
## [41/48] 请对下面的程序文件做一个概述: request_llms\bridge_newbing.py
这是一个名为`bridge_newbing.py`的程序文件,包含三个部分:
第一部分使用from语句导入了`edge_gpt`模块的`NewbingChatbot`类。
第二部分定义了一个名为`NewBingHandle`的继承自进程类的子类,该类会检查依赖性并启动进程。同时,该部分还定义了一个名为`predict_no_ui_long_connection`的多线程方法和一个名为`predict`的单线程方法,用于与NewBing进行通信。
第三部分定义了一个名为`newbing_handle`的全局变量,并导出了`predict_no_ui_long_connection``predict`这两个方法,以供其他程序可以调用。
## [42/48] 请对下面的程序文件做一个概述: request_llms\bridge_newbingfree.py
这个Python文件包含了三部分内容。第一部分是来自edge_gpt_free.py文件的聊天机器人程序。第二部分是子进程Worker,用于调用主体。第三部分提供了两个函数predict_no_ui_long_connection和predict用于调用NewBing聊天机器人和返回响应。其中predict函数还提供了一些参数用于控制聊天机器人的回复和更新UI界面。
## [43/48] 请对下面的程序文件做一个概述: request_llms\bridge_stackclaude.py
这是一个Python源代码文件,文件名为request_llm\bridge_stackclaude.py。代码分为三个主要部分
第一部分定义了Slack API Client类,实现Slack消息的发送、接收、循环监听,用于与Slack API进行交互。
第二部分定义了ClaudeHandle类,继承Process类,用于创建子进程Worker,调用主体,实现Claude与用户交互的功能。
第三部分定义了predict_no_ui_long_connection和predict两个函数,主要用于通过调用ClaudeHandle对象的stream_chat方法来获取Claude的回复,并更新ui以显示相关信息。其中predict函数采用单线程方法,而predict_no_ui_long_connection函数使用多线程方法。
## [44/48] 请对下面的程序文件做一个概述: request_llms\bridge_tgui.py
该文件是一个Python代码文件,名为request_llm\bridge_tgui.py。它包含了一些函数用于与chatbot UI交互,并通过WebSocket协议与远程LLM模型通信完成文本生成任务,其中最重要的函数是predict()和predict_no_ui_long_connection()。这个程序还有其他的辅助函数,如random_hash()。整个代码文件在协作的基础上完成了一次修改。
## [45/48] 请对下面的程序文件做一个概述: request_llms\edge_gpt.py
该文件是一个用于调用Bing chatbot API的Python程序,它由多个类和辅助函数构成,可以根据给定的对话连接在对话中提出问题,使用websocket与远程服务通信。程序实现了一个聊天机器人,可以为用户提供人工智能聊天。
## [46/48] 请对下面的程序文件做一个概述: request_llms\edge_gpt_free.py
该代码文件为一个会话API,可通过Chathub发送消息以返回响应。其中使用了 aiohttp 和 httpx 库进行网络请求并发送。代码中包含了一些函数和常量,多数用于生成请求数据或是请求头信息等。同时该代码文件还包含了一个 Conversation 类,调用该类可实现对话交互。
## [47/48] 请对下面的程序文件做一个概述: request_llms\test_llms.py
这个文件是用于对llm模型进行单元测试的Python程序。程序导入一个名为"request_llms.bridge_newbingfree"的模块,然后三次使用该模块中的predict_no_ui_long_connection()函数进行预测,并输出结果。此外,还有一些注释掉的代码段,这些代码段也是关于模型预测的。
## 用一张Markdown表格简要描述以下文件的功能
check_proxy.py, colorful.py, config.py, config_private.py, core_functional.py, crazy_functional.py, main.py, multi_language.py, theme.py, toolbox.py, crazy_functions\crazy_functions_test.py, crazy_functions\crazy_utils.py, crazy_functions\Latex全文润色.py, crazy_functions\Latex全文翻译.py, crazy_functions\__init__.py, crazy_functions\下载arxiv论文翻译摘要.py。根据以上分析,用一句话概括程序的整体功能。
| 文件名 | 功能描述 |
| ------ | ------ |
| check_proxy.py | 检查代理有效性及地理位置 |
| colorful.py | 控制台打印彩色文字 |
| config.py | 配置和参数设置 |
| config_private.py | 私人配置和参数设置 |
| core_functional.py | 核心函数和参数设置 |
| crazy_functional.py | 高级功能插件集合 |
| main.py | 一个 Chatbot 程序,提供各种学术翻译、文本处理和其他查询服务 |
| multi_language.py | 识别和翻译不同语言 |
| theme.py | 自定义 gradio 应用程序主题 |
| toolbox.py | 工具类库,用于协助实现各种功能 |
| crazy_functions\crazy_functions_test.py | 测试 crazy_functions 中的各种函数 |
| crazy_functions\crazy_utils.py | 工具函数,用于字符串处理、异常检测、Markdown 格式转换等 |
| crazy_functions\Latex全文润色.py | 对整个 Latex 项目进行润色和纠错 |
| crazy_functions\Latex全文翻译.py | 对整个 Latex 项目进行翻译 |
| crazy_functions\__init__.py | 模块初始化文件,标识 `crazy_functions` 是一个包 |
| crazy_functions\下载arxiv论文翻译摘要.py | 下载 `arxiv` 论文的 PDF 文件,并提取摘要和翻译 |
这些程序源文件提供了基础的文本和语言处理功能、工具函数和高级插件,使 Chatbot 能够处理各种复杂的学术文本问题,包括润色、翻译、搜索、下载、解析等。
## 用一张Markdown表格简要描述以下文件的功能
crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生成.py, crazy_functions\Conversation_To_File.py, crazy_functions\总结word文档.py, crazy_functions\总结音视频.py, crazy_functions\Markdown_Translate.py, crazy_functions\批量总结PDF文档.py, crazy_functions\批量总结PDF文档pdfminer.py, crazy_functions\PDF_Translate.py, crazy_functions\理解PDF文档内容.py, crazy_functions\生成函数注释.py, crazy_functions\联网的ChatGPT.py, crazy_functions\解析JupyterNotebook.py, crazy_functions\解析项目源代码.py, crazy_functions\询问多个大语言模型.py, crazy_functions\读文章写摘要.py。根据以上分析,用一句话概括程序的整体功能。
| 文件名 | 功能简述 |
| --- | --- |
| 代码重写为全英文_多线程.py | 将Python源代码文件中的中文内容转化为英文 |
| 图片生成.py | 根据激励文本使用GPT模型生成相应的图像 |
| Conversation_To_File.py | 将每次对话记录写入Markdown格式的文件中 |
| 总结word文档.py | 对输入的word文档进行摘要生成 |
| 总结音视频.py | 对输入的音视频文件进行摘要生成 |
| Markdown_Translate.py | 将指定目录下的Markdown文件进行中英文翻译 |
| 批量总结PDF文档.py | 对PDF文件进行切割和摘要生成 |
| 批量总结PDF文档pdfminer.py | 对PDF文件进行文本内容的提取和摘要生成 |
| PDF_Translate.py | 将指定目录下的PDF文件进行中英文翻译 |
| 理解PDF文档内容.py | 对PDF文件进行摘要生成和问题解答 |
| 生成函数注释.py | 自动生成Python函数的注释 |
| 联网的ChatGPT.py | 使用网络爬虫和ChatGPT模型进行聊天回答 |
| 解析JupyterNotebook.py | 对Jupyter Notebook进行代码解析 |
| 解析项目源代码.py | 对指定编程语言的源代码进行解析 |
| 询问多个大语言模型.py | 使用多个大语言模型对输入进行处理和回复 |
| 读文章写摘要.py | 对论文进行解析和全文摘要生成 |
概括程序的整体功能:提供了一系列处理文本、文件和代码的功能,使用了各类语言模型、多线程、网络请求和数据解析技术来提高效率和精度。
## 用一张Markdown表格简要描述以下文件的功能
crazy_functions\谷歌检索小助手.py, crazy_functions\高级功能函数模板.py, request_llms\bridge_all.py, request_llms\bridge_chatglm.py, request_llms\bridge_chatgpt.py, request_llms\bridge_jittorllms_llama.py, request_llms\bridge_jittorllms_pangualpha.py, request_llms\bridge_jittorllms_rwkv.py, request_llms\bridge_moss.py, request_llms\bridge_newbing.py, request_llms\bridge_newbingfree.py, request_llms\bridge_stackclaude.py, request_llms\bridge_tgui.py, request_llms\edge_gpt.py, request_llms\edge_gpt_free.py, request_llms\test_llms.py。根据以上分析,用一句话概括程序的整体功能。
| 文件名 | 功能描述 |
| --- | --- |
| crazy_functions\谷歌检索小助手.py | 提供谷歌学术搜索页面中相关文章的元数据信息。 |
| crazy_functions\高级功能函数模板.py | 使用Unsplash API发送相关图片以回复用户的输入。 |
| request_llms\bridge_all.py | 基于不同LLM模型进行对话。 |
| request_llms\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
| request_llms\bridge_chatgpt.py | 基于GPT模型完成对话。 |
| request_llms\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
| request_llms\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
| request_llms\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
| request_llms\bridge_moss.py | 加载Moss模型完成对话功能。 |
| request_llms\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
| request_llms\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
| request_llms\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
| request_llms\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
| request_llms\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
| request_llms\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
| request_llms\test_llms.py | 对llm模型进行单元测试。 |
| 程序整体功能 | 实现不同种类的聊天机器人,可以根据输入进行文本生成。 |

文件差异内容过多而无法显示 加载差异

文件差异内容过多而无法显示 加载差异

查看文件

@@ -1,129 +0,0 @@
{
"解析JupyterNotebook": "ParsingJupyterNotebook",
"Latex翻译中文并重新编译PDF": "TranslateChineseToEnglishInLatexAndRecompilePDF",
"联网的ChatGPT_bing版": "OnlineChatGPT_BingEdition",
"理解PDF文档内容标准文件输入": "UnderstandPdfDocumentContentStandardFileInput",
"Latex英文纠错加PDF对比": "CorrectEnglishInLatexWithPDFComparison",
"下载arxiv论文并翻译摘要": "DownloadArxivPaperAndTranslateAbstract",
"Markdown翻译指定语言": "TranslateMarkdownToSpecifiedLanguage",
"下载arxiv论文翻译摘要": "DownloadArxivPaperTranslateAbstract",
"解析一个Python项目": "ParsePythonProject",
"解析一个Golang项目": "ParseGolangProject",
"代码重写为全英文_多线程": "RewriteCodeToEnglish_MultiThreaded",
"解析一个CSharp项目": "ParsingCSharpProject",
"删除所有本地对话历史记录": "DeleteAllLocalConversationHistoryRecords",
"连接bing搜索回答问题": "ConnectBingSearchAnswerQuestion",
"Langchain知识库": "LangchainKnowledgeBase",
"把字符太少的块清除为回车": "ClearBlocksWithTooFewCharactersToNewline",
"Latex精细分解与转化": "DecomposeAndConvertLatex",
"解析一个C项目的头文件": "ParseCProjectHeaderFiles",
"Markdown英译中": "TranslateMarkdownFromEnglishToChinese",
"Markdown中译英": "MarkdownChineseToEnglish",
"数学动画生成manim": "MathematicalAnimationGenerationManim",
"chatglm微调工具": "ChatGLMFineTuningTool",
"解析一个Rust项目": "ParseRustProject",
"解析一个Java项目": "ParseJavaProject",
"联网的ChatGPT": "ChatGPTConnectedToNetwork",
"解析任意code项目": "ParseAnyCodeProject",
"合并小写开头的段落块": "MergeLowercaseStartingParagraphBlocks",
"Latex英文润色": "EnglishProofreadingForLatex",
"Latex全文润色": "FullTextProofreadingForLatex",
"询问多个大语言模型": "InquiryMultipleLargeLanguageModels",
"解析一个Lua项目": "ParsingLuaProject",
"解析ipynb文件": "ParsingIpynbFiles",
"批量总结PDF文档": "BatchSummarizePDFDocuments",
"批量翻译PDF文档": "BatchTranslatePDFDocuments",
"理解PDF文档内容": "UnderstandPdfDocumentContent",
"Latex中文润色": "LatexChineseProofreading",
"Latex英文纠错": "LatexEnglishCorrection",
"Latex全文翻译": "LatexFullTextTranslation",
"同时问询_指定模型": "InquireSimultaneously_SpecifiedModel",
"批量生成函数注释": "BatchGenerateFunctionComments",
"解析一个前端项目": "ParseFrontendProject",
"高阶功能模板函数": "HighOrderFunctionTemplateFunctions",
"高级功能函数模板": "AdvancedFunctionTemplate",
"总结word文档": "SummarizingWordDocuments",
"载入Conversation_To_File": "LoadConversationHistoryArchive",
"Latex中译英": "LatexChineseToEnglish",
"Latex英译中": "LatexEnglishToChinese",
"连接网络回答问题": "ConnectToNetworkToAnswerQuestions",
"交互功能模板函数": "InteractiveFunctionTemplateFunction",
"交互功能函数模板": "InteractiveFunctionFunctionTemplate",
"sprint亮靛": "SprintIndigo",
"print亮黄": "PrintBrightYellow",
"print亮绿": "PrintBrightGreen",
"print亮红": "PrintBrightRed",
"解析项目源代码": "ParseProjectSourceCode",
"解析一个C项目": "ParseCProject",
"全项目切换英文": "SwitchToEnglishForTheWholeProject",
"谷歌检索小助手": "GoogleSearchAssistant",
"读取知识库作答": "ReadKnowledgeArchiveAnswerQuestions",
"print亮蓝": "PrintBrightBlue",
"微调数据集生成": "FineTuneDatasetGeneration",
"清理多余的空行": "CleanUpExcessBlankLines",
"编译Latex": "CompileLatex",
"解析Paper": "ParsePaper",
"ipynb解释": "IpynbExplanation",
"读文章写摘要": "ReadArticleWriteSummary",
"生成函数注释": "GenerateFunctionComments",
"解析项目本身": "ParseProjectItself",
"专业词汇声明": "ProfessionalTerminologyDeclaration",
"解析docx": "ParseDocx",
"解析源代码新": "ParsingSourceCodeNew",
"总结音视频": "SummaryAudioVideo",
"知识库问答": "UpdateKnowledgeArchive",
"多文件润色": "ProofreadMultipleFiles",
"多文件翻译": "TranslateMultipleFiles",
"解析PDF": "ParsePDF",
"同时问询": "SimultaneousInquiry",
"图片生成": "ImageGeneration",
"动画生成": "AnimationGeneration",
"语音助手": "VoiceAssistant",
"启动微调": "StartFineTuning",
"清除缓存": "ClearCache",
"辅助功能": "Accessibility",
"虚空终端": "VoidTerminal",
"解析PDF_基于GROBID": "ParsePDF_BasedOnGROBID",
"虚空终端主路由": "VoidTerminalMainRoute",
"批量翻译PDF文档_NOUGAT": "BatchTranslatePDFDocuments_NOUGAT",
"解析PDF_基于NOUGAT": "ParsePDF_NOUGAT",
"解析一个Matlab项目": "AnalyzeAMatlabProject",
"函数动态生成": "DynamicFunctionGeneration",
"多智能体终端": "MultiAgentTerminal",
"多智能体": "MultiAgent",
"图片生成_DALLE2": "ImageGeneration_DALLE2",
"图片生成_DALLE3": "ImageGeneration_DALLE3",
"图片修改_DALLE2": "ImageModification_DALLE2",
"生成多种Mermaid图表": "GenerateMultipleMermaidCharts",
"知识库文件注入": "InjectKnowledgeBaseFiles",
"PDF翻译中文并重新编译PDF": "TranslatePDFToChineseAndRecompilePDF",
"随机小游戏": "RandomMiniGame",
"互动小游戏": "InteractiveMiniGame",
"解析历史输入": "ParseHistoricalInput",
"高阶功能模板函数示意图": "HighOrderFunctionTemplateDiagram",
"载入对话历史存档": "LoadChatHistoryArchive",
"对话历史存档": "ChatHistoryArchive",
"解析PDF_DOC2X_转Latex": "ParsePDF_DOC2X_toLatex",
"解析PDF_基于DOC2X": "ParsePDF_basedDOC2X",
"解析PDF_简单拆解": "ParsePDF_simpleDecomposition",
"解析PDF_DOC2X_单文件": "ParsePDF_DOC2X_singleFile",
"注释Python项目": "CommentPythonProject",
"注释源代码": "CommentSourceCode",
"log亮黄": "log_yellow",
"log亮绿": "log_green",
"log亮红": "log_red",
"log亮紫": "log_purple",
"log亮蓝": "log_blue",
"Rag问答": "RagQA",
"sprint红": "sprint_red",
"sprint绿": "sprint_green",
"sprint黄": "sprint_yellow",
"sprint蓝": "sprint_blue",
"sprint紫": "sprint_purple",
"sprint靛": "sprint_indigo",
"sprint亮红": "sprint_bright_red",
"sprint亮绿": "sprint_bright_green",
"sprint亮黄": "sprint_bright_yellow",
"sprint亮蓝": "sprint_bright_blue",
"sprint亮紫": "sprint_bright_purple"
}

文件差异内容过多而无法显示 加载差异

查看文件

@@ -1,63 +0,0 @@
# 使用音频交互功能
## 1. 安装额外依赖
```
pip install --upgrade pyOpenSSL webrtcvad scipy git+https://github.com/aliyun/alibabacloud-nls-python-sdk.git
```
如果因为特色网络问题导致上述命令无法执行:
1. git clone alibabacloud-nls-python-sdk这个项目或者直接前往Github对应网址下载压缩包.
命令行输入: `git clone https://github.com/aliyun/alibabacloud-nls-python-sdk.git`
1. 进入alibabacloud-nls-python-sdk目录命令行输入`python setup.py install`
## 2. 配置音频功能开关 和 阿里云APPKEYconfig.py/config_private.py/环境变量)
- 注册阿里云账号
- 开通 智能语音交互 (有免费白嫖时长)
- 获取token和appkey
- 未来将逐步用其他更廉价的云服务取代阿里云
```
ENABLE_AUDIO = True
ALIYUN_TOKEN = "554a50fcd0bb476c8d07bb630e94d20c" # 此token已经失效
ALIYUN_APPKEY = "RoPlZrM88DnAFkZK" # 此appkey已经失效
```
参考 https://help.aliyun.com/document_detail/450255.html
先有阿里云开发者账号,登录之后,需要开通 智能语音交互 的功能,可以免费获得一个token,然后在 全部项目 中,创建一个项目,可以获得一个appkey.
- 进阶功能
进一步填写ALIYUN_ACCESSKEY和ALIYUN_SECRET实现自动获取ALIYUN_TOKEN
```
ALIYUN_APPKEY = "RoP1ZrM84DnAFkZK"
ALIYUN_TOKEN = ""
ALIYUN_ACCESSKEY = "LTAI5q6BrFUzoRXVGUWnekh1"
ALIYUN_SECRET = "eHmI20AVWIaQZ0CiTD2bGQVsaP9i68"
```
## 3.启动
启动gpt-academic `python main.py`
## 4.点击record from microphe,授权音频采集
I 如果需要监听自己说话(不监听电脑音频),直接在浏览器中选择对应的麦即可
II 如果需要监听电脑音频(不监听自己说话),需要安装`VB-Audio VoiceMeeter`,打开声音控制面板(sound control panel)
- 1 `[把电脑的所有外放声音用VoiceMeeter截留]` 在输出区playback选项卡,把VoiceMeeter Input虚拟设备set as default设为默认播放设备。
- 2 `[把截留的声音释放到gpt-academic]` 打开gpt-academic主界面,授权音频采集后,在浏览器地址栏或者类似的地方会出现一个麦克风图标,打开后,按照浏览器的提示,选择VoiceMeeter虚拟麦克风。然后刷新页面,重新授权音频采集。
- 3 `[把截留的声音同时释放到耳机或音响]` 完成第一步之后,您应处于听不到电脑声音的状态。为了在截获音频的同时,避免影响正常使用,请完成这最后一步配置。在声音控制面板(sound control panel)输入区recording选项卡,把VoiceMeeter Output虚拟设备set as default。双击进入VoiceMeeter Output虚拟设备的设置。
- 3-1 进入VoiceMeeter Output虚拟设备子菜单,打开listen选项卡。
- 3-2 勾选Listen to this device。
- 3-3 在playback through this device下拉菜单中选择你的正常耳机或音响。
III `[把特殊软件如腾讯会议的外放声音用VoiceMeeter截留]` 在完成步骤II的基础上,在特殊软件如腾讯会议中,打开声音菜单,选择扬声器VoiceMeeter Input,选择麦克风为正常耳机麦。
VI 两种音频监听模式切换时,需要刷新页面才有效。
VII 非localhost运行+非https情况下无法打开录音功能的坑https://blog.csdn.net/weixin_39461487/article/details/109594434
## 5.点击函数插件区“实时音频采集” 或者其他音频交互功能

查看文件

@@ -1,164 +0,0 @@
# 微软Azure云接入指南
## 方法一旧方法,只能接入一个Azure模型
- 通过以下教程,获取AZURE_ENDPOINT,AZURE_API_KEY,AZURE_ENGINE,直接修改 config 配置即可。配置的修改方法见本项目wiki。
## 方法二新方法,接入多个Azure模型,并支持动态切换
- 在方法一的基础上,注册并获取多组 AZURE_ENDPOINT,AZURE_API_KEY,AZURE_ENGINE
- 修改config中的AZURE_CFG_ARRAY和AVAIL_LLM_MODELS配置项,按照格式填入多个Azure模型的配置,如下所示
```
AZURE_CFG_ARRAY = {
"azure-gpt-3.5": # 第一个模型,azure模型必须以"azure-"开头,注意您还需要将"azure-gpt-3.5"加入AVAIL_LLM_MODELS模型下拉菜单
{
"AZURE_ENDPOINT": "https://你亲手写的api名称.openai.azure.com/",
"AZURE_API_KEY": "cccccccccccccccccccccccccccccccc",
"AZURE_ENGINE": "填入你亲手写的部署名1",
"AZURE_MODEL_MAX_TOKEN": 4096,
},
"azure-gpt-4": # 第二个模型,azure模型必须以"azure-"开头,注意您还需要将"azure-gpt-4"加入AVAIL_LLM_MODELS模型下拉菜单
{
"AZURE_ENDPOINT": "https://你亲手写的api名称.openai.azure.com/",
"AZURE_API_KEY": "dddddddddddddddddddddddddddddddd",
"AZURE_ENGINE": "填入你亲手写的部署名2",
"AZURE_MODEL_MAX_TOKEN": 8192,
},
"azure-gpt-3.5-16k": # 第三个模型,azure模型必须以"azure-"开头,注意您还需要将"azure-gpt-3.5-16k"加入AVAIL_LLM_MODELS模型下拉菜单
{
"AZURE_ENDPOINT": "https://你亲手写的api名称.openai.azure.com/",
"AZURE_API_KEY": "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee",
"AZURE_ENGINE": "填入你亲手写的部署名3",
"AZURE_MODEL_MAX_TOKEN": 16384,
},
}
```
# 通过微软Azure云服务申请 Openai API
由于Openai和微软的关系,现在是可以通过微软的Azure云计算服务直接访问openai的api,免去了注册和网络的问题。
快速入门的官方文档的链接是:[快速入门 - 开始通过 Azure OpenAI 服务使用 ChatGPT 和 GPT-4 - Azure OpenAI Service | Microsoft Learn](https://learn.microsoft.com/zh-cn/azure/cognitive-services/openai/chatgpt-quickstart?pivots=programming-language-python)
# 申请API
按文档中的“先决条件”的介绍,出了编程的环境以外,还需要以下三个条件:
1.  Azure账号并创建订阅
2.  为订阅添加Azure OpenAI 服务
3.  部署模型
## Azure账号并创建订阅
### Azure账号
创建Azure的账号时最好是有微软的账号,这样似乎更容易获得免费额度第一个月的200美元,实测了一下,如果用一个刚注册的微软账号登录Azure的话,并没有这一个月的免费额度
创建Azure账号的网址是[立即创建 Azure 免费帐户 | Microsoft Azure](https://azure.microsoft.com/zh-cn/free/)
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_944786_iH6AECuZ_tY0EaBd_1685327219?w=1327\&h=695\&type=image/png)
打开网页后,点击 “免费开始使用” 会跳转到登录或注册页面,如果有微软的账户,直接登录即可,如果没有微软账户,那就需要到微软的网页再另行注册一个。
注意,Azure的页面和政策时不时会变化,已实际最新显示的为准就好。
### 创建订阅
注册好Azure后便可进入主页
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_444847_tk-9S-pxOYuaLs_K_1685327675?w=1865\&h=969\&type=image/png)
首先需要在订阅里进行添加操作,点开后即可进入订阅的页面:
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_612820_z_1AlaEgnJR-rUl0_1685327892?w=1865\&h=969\&type=image/png)
第一次进来应该是空的,点添加即可创建新的订阅可以是“免费”或者“即付即用”的订阅,其中订阅ID是后面申请Azure OpenAI需要使用的。
## 为订阅添加Azure OpenAI服务
之后回到首页,点Azure OpenAI即可进入OpenAI服务的页面如果不显示的话,则在首页上方的搜索栏里搜索“openai”即可
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_269759_nExkGcPC0EuAR5cp_1685328130?w=1865\&h=969\&type=image/png)
不过现在这个服务还不能用。在使用前,还需要在这个网址申请一下:
[Request Access to Azure OpenAI Service (microsoft.com)](https://customervoice.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR7en2Ais5pxKtso_Pz4b1_xUOFA5Qk1UWDRBMjg0WFhPMkIzTzhKQ1dWNyQlQCN0PWcu)
这里有二十来个问题,按照要求和自己的实际情况填写即可。
其中需要注意的是
1.  千万记得填对"订阅ID"
2.  需要填一个公司邮箱(可以不是注册用的邮箱)和公司网址
之后,在回到上面那个页面,点创建,就会进入创建页面了:
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_72708_9d9JYhylPVz3dFWL_1685328372?w=824\&h=590\&type=image/png)
需要填入“资源组”和“名称”,按照自己的需要填入即可。
完成后,在主页的“资源”里就可以看到刚才创建的“资源”了,点击进入后,就可以进行最后的部署了。
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_871541_CGCnbgtV9Uk1Jccy_1685329861?w=1217\&h=628\&type=image/png)
## 部署模型
进入资源页面后,在部署模型前,可以先点击“开发”,把密钥和终结点记下来。
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_852567_dxCZOrkMlWDSLH0d_1685330736?w=856\&h=568\&type=image/png)
之后,就可以去部署模型了,点击“部署”即可,会跳转到 Azure OpenAI Stuido 进行下面的操作:
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_169225_uWs1gMhpNbnwW4h2_1685329901?w=1865\&h=969\&type=image/png)
进入 Azure OpenAi Studio 后,点击新建部署,会弹出如下对话框:
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_391255_iXUSZAzoud5qlxjJ_1685330224?w=656\&h=641\&type=image/png)
在这里选 gpt-35-turbo 或需要的模型并按需要填入“部署名”即可完成模型的部署。
![](https://wdcdn.qpic.cn/MTY4ODg1Mjk4NzI5NTU1NQ_724099_vBaHcUilsm1EtPgK_1685330396?w=1869\&h=482\&type=image/png)
这个部署名需要记下来。
到现在为止,申请操作就完成了,需要记下来的有下面几个东西:
 密钥对应AZURE_API_KEY,1或2都可以
● 终结点 对应AZURE_ENDPOINT
 部署名对应AZURE_ENGINE,不是模型名
# 修改 config.py
```
LLM_MODEL = "azure-gpt-3.5" # 指定启动时的默认模型,当然事后从下拉菜单选也ok
AZURE_ENDPOINT = "填入终结点" # 见上述图片
AZURE_API_KEY = "填入azure openai api的密钥"
AZURE_API_VERSION = "2023-05-15" # 默认使用 2023-05-15 版本,无需修改
AZURE_ENGINE = "填入部署名" # 见上述图片
# 例如
API_KEY = '6424e9d19e674092815cea1cb35e67a5'
AZURE_ENDPOINT = 'https://rhtjjjjjj.openai.azure.com/'
AZURE_ENGINE = 'qqwe'
LLM_MODEL = "azure-gpt-3.5" # 可选 ↓↓↓
```
# 关于费用
Azure OpenAI API 还是需要一些费用的免费订阅只有1个月有效期
具体可以可以看这个网址 [Azure OpenAI 服务 - 定价| Microsoft Azure](https://azure.microsoft.com/zh-cn/pricing/details/cognitive-services/openai-service/?cdn=disable)
并非网上说的什么“一年白嫖”,但注册方法以及网络问题都比直接使用openai的api要简单一些。

查看文件

@@ -1,58 +0,0 @@
# 使用TTS文字转语音
## 1. 使用EDGE-TTS简单
将本项目配置项修改如下即可
```
TTS_TYPE = "EDGE_TTS"
EDGE_TTS_VOICE = "zh-CN-XiaoxiaoNeural"
```
## 2. 使用SoVITS需要有显卡
使用以下docker-compose.yml文件,先启动SoVITS服务API
1. 创建以下文件夹结构
```shell
.
├── docker-compose.yml
└── reference
├── clone_target_txt.txt
└── clone_target_wave.mp3
```
2. 其中`docker-compose.yml`为
```yaml
version: '3.8'
services:
gpt-sovits:
image: fuqingxu/sovits_gptac_trim:latest
container_name: sovits_gptac_container
working_dir: /workspace/gpt_sovits_demo
environment:
- is_half=False
- is_share=False
volumes:
- ./reference:/reference
ports:
- "19880:9880" # 19880 为 sovits api 的暴露端口,记住它
shm_size: 16G
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: "all"
capabilities: [gpu]
command: bash -c "python3 api.py"
```
3. 其中`clone_target_wave.mp3`为需要克隆的角色音频,`clone_target_txt.txt`为该音频对应的文字文本( https://wiki.biligame.com/ys/%E8%A7%92%E8%89%B2%E8%AF%AD%E9%9F%B3
4. 运行`docker-compose up`
5. 将本项目配置项修改如下即可
(19880 为 sovits api 的暴露端口,与docker-compose.yml中的端口对应)
```
TTS_TYPE = "LOCAL_SOVITS_API"
GPT_SOVITS_URL = "http://127.0.0.1:19880"
```
6. 启动本项目

查看文件

@@ -1,46 +0,0 @@
# 使用VLLM
## 1. 首先启动 VLLM,自行选择模型
```
python -m vllm.entrypoints.openai.api_server --model /home/hmp/llm/cache/Qwen1___5-32B-Chat --tensor-parallel-size 2 --dtype=half
```
这里使用了存储在 `/home/hmp/llm/cache/Qwen1___5-32B-Chat` 的本地模型,可以根据自己的需求更改。
## 2. 测试 VLLM
```
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "/home/hmp/llm/cache/Qwen1___5-32B-Chat",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "怎么实现一个去中心化的控制器?"}
]
}'
```
## 3. 配置本项目
```
API_KEY = "sk-123456789xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx123456789"
LLM_MODEL = "vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=4096)"
API_URL_REDIRECT = {"https://api.openai.com/v1/chat/completions": "http://localhost:8000/v1/chat/completions"}
```
```
"vllm-/home/hmp/llm/cache/Qwen1___5-32B-Chat(max_token=4096)"
其中
"vllm-" 是前缀(必要)
"/home/hmp/llm/cache/Qwen1___5-32B-Chat" 是模型名(必要)
"(max_token=6666)" 是配置(非必要)
```
## 4. 启动!
```
python main.py
```