镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
接入新模型
这个提交包含在:
59
request_llms/bridge_zhipu.py
普通文件
59
request_llms/bridge_zhipu.py
普通文件
@@ -0,0 +1,59 @@
|
||||
|
||||
import time
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
|
||||
model_name = '智谱AI大模型'
|
||||
|
||||
def validate_key():
|
||||
ZHIPUAI_API_KEY, = get_conf("ZHIPUAI_API_KEY")
|
||||
if ZHIPUAI_API_KEY == '': return False
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
|
||||
if validate_key() is False:
|
||||
raise RuntimeError('请配置ZHIPUAI_API_KEY')
|
||||
|
||||
from .com_zhipuapi import ZhipuRequestInstance
|
||||
sri = ZhipuRequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 开始接收回复
|
||||
from .com_zhipuapi import ZhipuRequestInstance
|
||||
sri = ZhipuRequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
在新工单中引用
屏蔽一个用户