normalize source code names

这个提交包含在:
binary-husky
2025-08-24 20:12:34 +08:00
父节点 248b0aefae
当前提交 0ab0417954
共有 35 个文件被更改,包括 232 次插入412 次删除

查看文件

@@ -0,0 +1,437 @@
from toolbox import CatchException, update_ui, report_exception
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.plugin_template.plugin_class_template import (
GptAcademicPluginTemplate,
)
from crazy_functions.plugin_template.plugin_class_template import ArgProperty
# 以下是每类图表的PROMPT
SELECT_PROMPT = """
{subject}
=============
以上是从文章中提取的摘要,将会使用这些摘要绘制图表。请你选择一个合适的图表类型:
1 流程图
2 序列图
3 类图
4 饼图
5 甘特图
6 状态图
7 实体关系图
8 象限提示图
不需要解释原因,仅需要输出单个不带任何标点符号的数字。
"""
# 没有思维导图!!!测试发现模型始终会优先选择思维导图
# 流程图
PROMPT_1 = """
请你给出围绕“{subject}”的逻辑关系图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
graph TD
P("编程") --> L1("Python")
P("编程") --> L2("C")
P("编程") --> L3("C++")
P("编程") --> L4("Javascipt")
P("编程") --> L5("PHP")
```
"""
# 序列图
PROMPT_2 = """
请你给出围绕“{subject}”的序列图,使用mermaid语法。
mermaid语法举例
```mermaid
sequenceDiagram
participant A as 用户
participant B as 系统
A->>B: 登录请求
B->>A: 登录成功
A->>B: 获取数据
B->>A: 返回数据
```
"""
# 类图
PROMPT_3 = """
请你给出围绕“{subject}”的类图,使用mermaid语法。
mermaid语法举例
```mermaid
classDiagram
Class01 <|-- AveryLongClass : Cool
Class03 *-- Class04
Class05 o-- Class06
Class07 .. Class08
Class09 --> C2 : Where am i?
Class09 --* C3
Class09 --|> Class07
Class07 : equals()
Class07 : Object[] elementData
Class01 : size()
Class01 : int chimp
Class01 : int gorilla
Class08 <--> C2: Cool label
```
"""
# 饼图
PROMPT_4 = """
请你给出围绕“{subject}”的饼图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
pie title Pets adopted by volunteers
"" : 386
"" : 85
"兔子" : 15
```
"""
# 甘特图
PROMPT_5 = """
请你给出围绕“{subject}”的甘特图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
gantt
title "项目开发流程"
dateFormat YYYY-MM-DD
section "设计"
"需求分析" :done, des1, 2024-01-06,2024-01-08
"原型设计" :active, des2, 2024-01-09, 3d
"UI设计" : des3, after des2, 5d
section "开发"
"前端开发" :2024-01-20, 10d
"后端开发" :2024-01-20, 10d
```
"""
# 状态图
PROMPT_6 = """
请你给出围绕“{subject}”的状态图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
stateDiagram-v2
[*] --> "Still"
"Still" --> [*]
"Still" --> "Moving"
"Moving" --> "Still"
"Moving" --> "Crash"
"Crash" --> [*]
```
"""
# 实体关系图
PROMPT_7 = """
请你给出围绕“{subject}”的实体关系图,使用mermaid语法。
mermaid语法举例
```mermaid
erDiagram
CUSTOMER ||--o{ ORDER : places
ORDER ||--|{ LINE-ITEM : contains
CUSTOMER {
string name
string id
}
ORDER {
string orderNumber
date orderDate
string customerID
}
LINE-ITEM {
number quantity
string productID
}
```
"""
# 象限提示图
PROMPT_8 = """
请你给出围绕“{subject}”的象限图,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
graph LR
A["Hard skill"] --> B("Programming")
A["Hard skill"] --> C("Design")
D["Soft skill"] --> E("Coordination")
D["Soft skill"] --> F("Communication")
```
"""
# 思维导图
PROMPT_9 = """
{subject}
==========
请给出上方内容的思维导图,充分考虑其之间的逻辑,使用mermaid语法,注意需要使用双引号将内容括起来。
mermaid语法举例
```mermaid
mindmap
root((mindmap))
("Origins")
("Long history")
::icon(fa fa-book)
("Popularisation")
("British popular psychology author Tony Buzan")
::icon(fa fa-user)
("Research")
("On effectiveness<br/>and features")
::icon(fa fa-search)
("On Automatic creation")
::icon(fa fa-robot)
("Uses")
("Creative techniques")
::icon(fa fa-lightbulb-o)
("Strategic planning")
::icon(fa fa-flag)
("Argument mapping")
::icon(fa fa-comments)
("Tools")
("Pen and paper")
::icon(fa fa-pencil)
("Mermaid")
::icon(fa fa-code)
```
"""
def 解析历史输入(history, llm_kwargs, file_manifest, chatbot, plugin_kwargs):
############################## <第 0 步,切割输入> ##################################
# 借用PDF切割中的函数对文本进行切割
TOKEN_LIMIT_PER_FRAGMENT = 2500
txt = (
str(history).encode("utf-8", "ignore").decode()
) # avoid reading non-utf8 chars
from crazy_functions.pdf_fns.breakdown_txt import (
breakdown_text_to_satisfy_token_limit,
)
txt = breakdown_text_to_satisfy_token_limit(
txt=txt, limit=TOKEN_LIMIT_PER_FRAGMENT, llm_model=llm_kwargs["llm_model"]
)
############################## <第 1 步,迭代地历遍整个文章,提取精炼信息> ##################################
results = []
MAX_WORD_TOTAL = 4096
n_txt = len(txt)
last_iteration_result = "从以下文本中提取摘要。"
for i in range(n_txt):
NUM_OF_WORD = MAX_WORD_TOTAL // n_txt
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words in Chinese: {txt[i]}"
i_say_show_user = f"[{i+1}/{n_txt}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {txt[i][:200]} ...."
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
i_say,
i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
llm_kwargs,
chatbot,
history=[
"The main content of the previous section is?",
last_iteration_result,
], # 迭代上一次的结果
sys_prompt="Extracts the main content from the text section where it is located for graphing purposes, answer me with Chinese.", # 提示
)
results.append(gpt_say)
last_iteration_result = gpt_say
############################## <第 2 步,根据整理的摘要选择图表类型> ##################################
gpt_say = str(plugin_kwargs) # 将图表类型参数赋值为插件参数
results_txt = "\n".join(results) # 合并摘要
if gpt_say not in [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
]: # 如插件参数不正确则使用对话模型判断
i_say_show_user = (
f"接下来将判断适合的图表类型,如连续3次判断失败将会使用流程图进行绘制"
)
gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say])
yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
i_say = SELECT_PROMPT.format(subject=results_txt)
i_say_show_user = f'请判断适合使用的流程图类型,其中数字对应关系为:1-流程图,2-序列图,3-类图,4-饼图,5-甘特图,6-状态图,7-实体关系图,8-象限提示图。由于不管提供文本是什么,模型大概率认为"思维导图"最合适,因此思维导图仅能通过参数调用。'
for i in range(3):
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="",
)
if gpt_say in [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
]: # 判断返回是否正确
break
if gpt_say not in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:
gpt_say = "1"
############################## <第 3 步,根据选择的图表类型绘制图表> ##################################
if gpt_say == "1":
i_say = PROMPT_1.format(subject=results_txt)
elif gpt_say == "2":
i_say = PROMPT_2.format(subject=results_txt)
elif gpt_say == "3":
i_say = PROMPT_3.format(subject=results_txt)
elif gpt_say == "4":
i_say = PROMPT_4.format(subject=results_txt)
elif gpt_say == "5":
i_say = PROMPT_5.format(subject=results_txt)
elif gpt_say == "6":
i_say = PROMPT_6.format(subject=results_txt)
elif gpt_say == "7":
i_say = PROMPT_7.replace("{subject}", results_txt) # 由于实体关系图用到了{}符号
elif gpt_say == "8":
i_say = PROMPT_8.format(subject=results_txt)
elif gpt_say == "9":
i_say = PROMPT_9.format(subject=results_txt)
i_say_show_user = f"请根据判断结果绘制相应的图表。如需绘制思维导图请使用参数调用,同时过大的图表可能需要复制到在线编辑器中进行渲染。"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say,
inputs_show_user=i_say_show_user,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history=[],
sys_prompt="",
)
history.append(gpt_say)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 界面更新
@CatchException
def Mermaid_Figure_Gen(
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port
):
"""
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行
plugin_kwargs 插件模型的参数,用于灵活调整复杂功能的各种参数
chatbot 聊天显示框的句柄,用于显示给用户
history 聊天历史,前情提要
system_prompt 给gpt的静默提醒
web_port 当前软件运行的端口号
"""
import os
# 基本信息:功能、贡献者
chatbot.append(
[
"函数插件功能?",
"根据当前聊天历史或指定的路径文件(文件内容优先)绘制多种mermaid图表,将会由对话模型首先判断适合的图表类型,随后绘制图表。\
\n您也可以使用插件参数指定绘制的图表类型,函数插件贡献者: Menghuan1918",
]
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
if os.path.exists(txt): # 如输入区无内容则直接解析历史记录
from crazy_functions.pdf_fns.parse_word import extract_text_from_files
file_exist, final_result, page_one, file_manifest, exception = (
extract_text_from_files(txt, chatbot, history)
)
else:
file_exist = False
exception = ""
file_manifest = []
if exception != "":
if exception == "word":
report_exception(
chatbot,
history,
a=f"解析项目: {txt}",
b=f"找到了.doc文件,但是该文件格式不被支持,请先转化为.docx格式。",
)
elif exception == "pdf":
report_exception(
chatbot,
history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。",
)
elif exception == "word_pip":
report_exception(
chatbot,
history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade python-docx pywin32```。",
)
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
else:
if not file_exist:
history.append(txt) # 如输入区不是文件则将输入区内容加入历史记录
i_say_show_user = f"首先你从历史记录中提取摘要。"
gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
yield from 解析历史输入(
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
)
else:
file_num = len(file_manifest)
for i in range(file_num): # 依次处理文件
i_say_show_user = f"[{i+1}/{file_num}]处理文件{file_manifest[i]}"
gpt_say = "[Local Message] 收到。" # 用户提示
chatbot.append([i_say_show_user, gpt_say])
yield from update_ui(chatbot=chatbot, history=history) # 更新UI
history = [] # 如输入区内容为文件则清空历史记录
history.append(final_result[i])
yield from 解析历史输入(
history, llm_kwargs, file_manifest, chatbot, plugin_kwargs
)
class Mermaid_Gen(GptAcademicPluginTemplate):
def __init__(self):
pass
def define_arg_selection_menu(self):
gui_definition = {
"Type_of_Mermaid": ArgProperty(
title="绘制的Mermaid图表类型",
options=[
"由LLM决定",
"流程图",
"序列图",
"类图",
"饼图",
"甘特图",
"状态图",
"实体关系图",
"象限提示图",
"思维导图",
],
default_value="由LLM决定",
description="选择'由LLM决定'时将由对话模型判断适合的图表类型(不包括思维导图),选择其他类型时将直接绘制指定的图表类型。",
type="dropdown",
).model_dump_json(),
}
return gui_definition
def execute(
txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request
):
options = [
"由LLM决定",
"流程图",
"序列图",
"类图",
"饼图",
"甘特图",
"状态图",
"实体关系图",
"象限提示图",
"思维导图",
]
plugin_kwargs = options.index(plugin_kwargs['Type_of_Mermaid'])
yield from Mermaid_Figure_Gen(
txt,
llm_kwargs,
plugin_kwargs,
chatbot,
history,
system_prompt,
user_request,
)