镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 06:26:47 +00:00
rag version one
这个提交包含在:
@@ -5,11 +5,40 @@ from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log
|
||||
from shared_utils.key_pattern_manager import select_api_key_for_embed_models
|
||||
from typing import List, Any
|
||||
|
||||
class OpenAiEmbeddingModel():
|
||||
import numpy as np
|
||||
|
||||
def mean_agg(embeddings):
|
||||
"""Mean aggregation for embeddings."""
|
||||
return np.array(embeddings).mean(axis=0).tolist()
|
||||
|
||||
class EmbeddingModel():
|
||||
|
||||
def get_agg_embedding_from_queries(
|
||||
self,
|
||||
queries: List[str],
|
||||
agg_fn = None,
|
||||
):
|
||||
"""Get aggregated embedding from multiple queries."""
|
||||
query_embeddings = [self.get_query_embedding(query) for query in queries]
|
||||
agg_fn = agg_fn or mean_agg
|
||||
return agg_fn(query_embeddings)
|
||||
|
||||
def get_text_embedding_batch(
|
||||
self,
|
||||
texts: List[str],
|
||||
show_progress: bool = False,
|
||||
):
|
||||
return self.compute_embedding(texts, batch_mode=True)
|
||||
|
||||
|
||||
class OpenAiEmbeddingModel(EmbeddingModel):
|
||||
|
||||
def __init__(self, llm_kwargs:dict=None):
|
||||
self.llm_kwargs = llm_kwargs
|
||||
|
||||
def get_query_embedding(self, query: str):
|
||||
return self.compute_embedding(query)
|
||||
|
||||
def compute_embedding(self, text="这是要计算嵌入的文本", llm_kwargs:dict=None, batch_mode=False):
|
||||
from .bridge_all_embed import embed_model_info
|
||||
|
||||
@@ -20,9 +49,9 @@ class OpenAiEmbeddingModel():
|
||||
raise RuntimeError("llm_kwargs is not provided!")
|
||||
|
||||
# setup api and req url
|
||||
api_key = select_api_key_for_embed_models(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
embed_model = llm_kwargs['llm_model']
|
||||
base_url = embed_model_info[llm_kwargs['llm_model']]['embed_endpoint'].replace('embeddings', '')
|
||||
api_key = select_api_key_for_embed_models(llm_kwargs['api_key'], llm_kwargs['embed_model'])
|
||||
embed_model = llm_kwargs['embed_model']
|
||||
base_url = embed_model_info[llm_kwargs['embed_model']]['embed_endpoint'].replace('embeddings', '')
|
||||
|
||||
# send and compute
|
||||
with ProxyNetworkActivate("Connect_OpenAI_Embedding"):
|
||||
@@ -40,21 +69,11 @@ class OpenAiEmbeddingModel():
|
||||
embedding = [d.embedding for d in res.data]
|
||||
else:
|
||||
embedding = res.data[0].embedding
|
||||
|
||||
return embedding
|
||||
|
||||
|
||||
def embedding_dimension(self, llm_kwargs):
|
||||
|
||||
from .bridge_all_embed import embed_model_info
|
||||
return embed_model_info[llm_kwargs['llm_model']]['embed_dimension']
|
||||
|
||||
def get_text_embedding_batch(
|
||||
self,
|
||||
texts: List[str],
|
||||
show_progress: bool = False,
|
||||
):
|
||||
return self.compute_embedding(texts, batch_mode=True)
|
||||
return embed_model_info[llm_kwargs['embed_model']]['embed_dimension']
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
在新工单中引用
屏蔽一个用户