镜像自地址
https://github.com/binary-husky/gpt_academic.git
已同步 2025-12-06 14:36:48 +00:00
修改文件命名
这个提交包含在:
252
request_llm/bridge_chatgpt.py
普通文件
252
request_llm/bridge_chatgpt.py
普通文件
@@ -0,0 +1,252 @@
|
||||
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||
|
||||
"""
|
||||
该文件中主要包含三个函数
|
||||
|
||||
不具备多线程能力的函数:
|
||||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||
|
||||
具备多线程调用能力的函数
|
||||
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
|
||||
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||||
"""
|
||||
|
||||
import json
|
||||
import gradio as gr
|
||||
import logging
|
||||
import traceback
|
||||
import requests
|
||||
import importlib
|
||||
|
||||
# config_private.py放自己的秘密如API和代理网址
|
||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||
from toolbox import get_conf
|
||||
proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL = \
|
||||
get_conf('proxies', 'API_URL', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'LLM_MODEL')
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||
|
||||
def get_full_error(chunk, stream_response):
|
||||
"""
|
||||
获取完整的从Openai返回的报错
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
chunk += next(stream_response)
|
||||
except:
|
||||
break
|
||||
return chunk
|
||||
|
||||
def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。
|
||||
predict函数的简化版。
|
||||
用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。
|
||||
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表
|
||||
(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError)
|
||||
"""
|
||||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False)
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
||||
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
|
||||
try:
|
||||
result = json.loads(response.text)["choices"][0]["message"]["content"]
|
||||
return result
|
||||
except Exception as e:
|
||||
if "choices" not in response.text: print(response.text)
|
||||
raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
|
||||
|
||||
|
||||
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt="", observe_window=None):
|
||||
"""
|
||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免有人中途掐网线。
|
||||
observe_window:用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可
|
||||
"""
|
||||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True)
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=False
|
||||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||
except requests.exceptions.ReadTimeout as e:
|
||||
retry += 1
|
||||
traceback.print_exc()
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||
|
||||
stream_response = response.iter_lines()
|
||||
result = ''
|
||||
while True:
|
||||
try: chunk = next(stream_response).decode()
|
||||
except StopIteration: break
|
||||
if len(chunk)==0: continue
|
||||
if not chunk.startswith('data:'):
|
||||
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode()
|
||||
if "reduce the length" in error_msg:
|
||||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg)
|
||||
else:
|
||||
raise RuntimeError("OpenAI拒绝了请求:" + error_msg)
|
||||
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
|
||||
delta = json_data["delta"]
|
||||
if len(delta) == 0: break
|
||||
if "role" in delta: continue
|
||||
if "content" in delta:
|
||||
result += delta["content"]
|
||||
print(delta["content"], end='')
|
||||
if observe_window is not None: observe_window[0] += delta["content"]
|
||||
else: raise RuntimeError("意外Json结构:"+delta)
|
||||
if json_data['finish_reason'] == 'length':
|
||||
raise ConnectionAbortedError("正常结束,但显示Token不足。")
|
||||
return result
|
||||
|
||||
|
||||
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='',
|
||||
stream = True, additional_fn=None):
|
||||
"""
|
||||
发送至chatGPT,流式获取输出。
|
||||
用于基础的对话功能。
|
||||
inputs 是本次问询的输入
|
||||
top_p, temperature是chatGPT的内部调优参数
|
||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||
"""
|
||||
if additional_fn is not None:
|
||||
import functional
|
||||
importlib.reload(functional) # 热更新prompt
|
||||
functional = functional.get_functionals()
|
||||
if "PreProcess" in functional[additional_fn]: inputs = functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
|
||||
|
||||
if stream:
|
||||
raw_input = inputs
|
||||
logging.info(f'[raw_input] {raw_input}')
|
||||
chatbot.append((inputs, ""))
|
||||
yield chatbot, history, "等待响应"
|
||||
|
||||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
|
||||
history.append(inputs); history.append(" ")
|
||||
|
||||
retry = 0
|
||||
while True:
|
||||
try:
|
||||
# make a POST request to the API endpoint, stream=True
|
||||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
||||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||
except:
|
||||
retry += 1
|
||||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||
yield chatbot, history, "请求超时"+retry_msg
|
||||
if retry > MAX_RETRY: raise TimeoutError
|
||||
|
||||
gpt_replying_buffer = ""
|
||||
|
||||
is_head_of_the_stream = True
|
||||
if stream:
|
||||
stream_response = response.iter_lines()
|
||||
while True:
|
||||
chunk = next(stream_response)
|
||||
# print(chunk.decode()[6:])
|
||||
if is_head_of_the_stream:
|
||||
# 数据流的第一帧不携带content
|
||||
is_head_of_the_stream = False; continue
|
||||
|
||||
if chunk:
|
||||
try:
|
||||
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
|
||||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||||
logging.info(f'[response] {gpt_replying_buffer}')
|
||||
break
|
||||
# 处理数据流的主体
|
||||
chunkjson = json.loads(chunk.decode()[6:])
|
||||
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
|
||||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||||
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
|
||||
history[-1] = gpt_replying_buffer
|
||||
chatbot[-1] = (history[-2], history[-1])
|
||||
yield chatbot, history, status_text
|
||||
|
||||
except Exception as e:
|
||||
traceback.print_exc()
|
||||
yield chatbot, history, "Json解析不合常规"
|
||||
chunk = get_full_error(chunk, stream_response)
|
||||
error_msg = chunk.decode()
|
||||
if "reduce the length" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Input (or history) is too long, please reduce input or clear history by refreshing this page.")
|
||||
history = [] # 清除历史
|
||||
elif "Incorrect API key" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key provided.")
|
||||
elif "exceeded your current quota" in error_msg:
|
||||
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由,拒绝服务.")
|
||||
else:
|
||||
from toolbox import regular_txt_to_markdown
|
||||
tb_str = '```\n' + traceback.format_exc() + '```'
|
||||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode()[4:])}")
|
||||
yield chatbot, history, "Json异常" + error_msg
|
||||
return
|
||||
|
||||
def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
|
||||
"""
|
||||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||
"""
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {API_KEY}"
|
||||
}
|
||||
|
||||
conversation_cnt = len(history) // 2
|
||||
|
||||
messages = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "": continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
|
||||
payload = {
|
||||
"model": LLM_MODEL,
|
||||
"messages": messages,
|
||||
"temperature": temperature, # 1.0,
|
||||
"top_p": top_p, # 1.0,
|
||||
"n": 1,
|
||||
"stream": stream,
|
||||
"presence_penalty": 0,
|
||||
"frequency_penalty": 0,
|
||||
}
|
||||
|
||||
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
|
||||
return headers,payload
|
||||
|
||||
|
||||
在新工单中引用
屏蔽一个用户