镜像自地址
https://gitee.com/medical-alliance/Medical-nlp.git
已同步 2025-12-06 01:16:47 +00:00
61 行
1.7 KiB
Python
61 行
1.7 KiB
Python
import gensim
|
|
import numpy as np
|
|
import jieba
|
|
from gensim.models.doc2vec import Doc2Vec,TaggedDocument
|
|
|
|
|
|
def jieba_tokenize(text):
|
|
"""
|
|
文本分词
|
|
:param text: 文本
|
|
:return: 分词list
|
|
"""
|
|
return jieba.lcut(text)
|
|
|
|
|
|
def get_datasest():
|
|
"""
|
|
获取doc2vec文本训练数据集
|
|
:return: 文本分词list,及id
|
|
"""
|
|
x_train = []
|
|
for file in open('toutiao_cat_data.txt', encoding='utf8'):
|
|
file = file.split('_!_')
|
|
if len(file) > 3:
|
|
document = TaggededDocument(file[3], tags=[int(file[1])])
|
|
x_train.append(document)
|
|
return x_train
|
|
|
|
|
|
def train(x_train, size=2000, epoch_num=10):
|
|
model_dm = Doc2Vec(x_train, min_count=1, window=3, size=size, sample=1e-3, negative=5, workers=4)
|
|
model_dm.train(x_train, total_examples=model_dm.corpus_count, epochs=epoch_num)
|
|
model_dm.save('model')
|
|
return model_dm
|
|
|
|
|
|
def getVecs(model, corpus, size):
|
|
vecs = [np.array(model.docvecs[z.tags[0]].reshape(1, size)) for z in corpus]
|
|
return np.concatenate(vecs)
|
|
|
|
|
|
def test():
|
|
model_dm = Doc2Vec.load("model")
|
|
test_text = ['想换个', '30', '万左右', '的', '车', ',', '现在', '开科鲁兹', ',', '有', '什么', '好', '推荐', '的', '?']
|
|
inferred_vector_dm = model_dm.infer_vector(test_text)
|
|
sims = model_dm.docvecs.most_similar([inferred_vector_dm], topn=10)
|
|
return sims
|
|
|
|
|
|
if __name__ == '__main__':
|
|
x_train = get_datasest()
|
|
model_dm = train(x_train)
|
|
|
|
sims = test()
|
|
for count, sim in sims:
|
|
sentence = x_train[count]
|
|
words = ''
|
|
for word in sentence[0]:
|
|
words = words + word + ' '
|
|
print(words, sim, len(sentence[0]))
|