文件
Medical-nlp/src/doc2vec_data.py
2020-08-25 21:39:14 +08:00

61 行
1.7 KiB
Python

import gensim
import numpy as np
import jieba
from gensim.models.doc2vec import Doc2Vec,TaggedDocument
def jieba_tokenize(text):
"""
文本分词
:param text: 文本
:return: 分词list
"""
return jieba.lcut(text)
def get_datasest():
"""
获取doc2vec文本训练数据集
:return: 文本分词list,及id
"""
x_train = []
for file in open('toutiao_cat_data.txt', encoding='utf8'):
file = file.split('_!_')
if len(file) > 3:
document = TaggededDocument(file[3], tags=[int(file[1])])
x_train.append(document)
return x_train
def train(x_train, size=2000, epoch_num=10):
model_dm = Doc2Vec(x_train, min_count=1, window=3, size=size, sample=1e-3, negative=5, workers=4)
model_dm.train(x_train, total_examples=model_dm.corpus_count, epochs=epoch_num)
model_dm.save('model')
return model_dm
def getVecs(model, corpus, size):
vecs = [np.array(model.docvecs[z.tags[0]].reshape(1, size)) for z in corpus]
return np.concatenate(vecs)
def test():
model_dm = Doc2Vec.load("model")
test_text = ['想换个', '30', '万左右', '', '', '', '现在', '开科鲁兹', '', '', '什么', '', '推荐', '', '']
inferred_vector_dm = model_dm.infer_vector(test_text)
sims = model_dm.docvecs.most_similar([inferred_vector_dm], topn=10)
return sims
if __name__ == '__main__':
x_train = get_datasest()
model_dm = train(x_train)
sims = test()
for count, sim in sims:
sentence = x_train[count]
words = ''
for word in sentence[0]:
words = words + word + ' '
print(words, sim, len(sentence[0]))