镜像自地址
https://gitee.com/medical-alliance/Medical-nlp.git
已同步 2025-12-06 17:36:47 +00:00
增加word2vec训练
这个提交包含在:
64
src/medical_word2vec.py
普通文件
64
src/medical_word2vec.py
普通文件
@@ -0,0 +1,64 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import jieba
|
||||
import warnings
|
||||
import logging
|
||||
import os.path
|
||||
import sys
|
||||
import multiprocessing
|
||||
|
||||
from gensim.models import Word2Vec
|
||||
from gensim.models.word2vec import LineSentence
|
||||
filePath = 'corpus_1.txt'
|
||||
fileSegWordDonePath = 'corpusSegDone_1.txt'
|
||||
warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim')
|
||||
|
||||
|
||||
# 打印中文列表
|
||||
def PrintListChinese(list):
|
||||
for i in range(len(list)):
|
||||
print(list[i])
|
||||
|
||||
|
||||
fileTrainRead = []
|
||||
with open(filePath, 'r') as fileTrainRaw:
|
||||
for line in fileTrainRaw: # 按行读取文件
|
||||
fileTrainRead.append(line)
|
||||
|
||||
# jieba分词后保存在列表中
|
||||
fileTrainSeg = []
|
||||
for i in range(len(fileTrainRead)):
|
||||
fileTrainSeg.append([' '.join(list(jieba.cut(fileTrainRead[i][9:-11], cut_all=False)))])
|
||||
if i % 100 == 0:
|
||||
print(i)
|
||||
|
||||
# 保存分词结果到文件中
|
||||
with open(fileSegWordDonePath, 'w', encoding='utf-8') as fW:
|
||||
for i in range(len(fileTrainSeg)):
|
||||
fW.write(fileTrainSeg[i][0])
|
||||
fW.write('\n')
|
||||
|
||||
"""
|
||||
gensim word2vec获取词向量
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
program = os.path.basename(sys.argv[0]) # 读取当前文件的文件名
|
||||
logger = logging.getLogger(program)
|
||||
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s', level=logging.INFO)
|
||||
logger.info("running %s" % ' '.join(sys.argv))
|
||||
|
||||
# inp为输入语料, outp1为输出模型, outp2为vector格式的模型
|
||||
inp = 'corpusSegDone_1.txt'
|
||||
out_model = 'corpusSegDone_1.model'
|
||||
out_vector = 'corpusSegDone_1.vector'
|
||||
|
||||
# 训练skip-gram模型
|
||||
model = Word2Vec(LineSentence(inp), size=50, window=5, min_count=5,
|
||||
workers=multiprocessing.cpu_count())
|
||||
|
||||
# 保存模型
|
||||
model.save(out_model)
|
||||
# 保存词向量
|
||||
model.wv.save_word2vec_format(out_vector, binary=False)
|
||||
在新工单中引用
屏蔽一个用户