镜像自地址
https://github.com/SCIR-HI/Med-ChatGLM.git
已同步 2025-12-06 06:36:50 +00:00
v0.1 commit
这个提交包含在:
345
tokenization_chatglm.py
普通文件
345
tokenization_chatglm.py
普通文件
@@ -0,0 +1,345 @@
|
||||
"""Tokenization classes for ChatGLM."""
|
||||
import sys
|
||||
import unicodedata
|
||||
from typing import List, Optional, Union
|
||||
from functools import lru_cache
|
||||
import os
|
||||
import collections
|
||||
import re
|
||||
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
from icetk.text_tokenizer import TextTokenizer
|
||||
from icetk.utils import auto_create
|
||||
import icetk.sentencepiece_model_pb2 as sp_model
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"THUDM/chatglm-6b": 2048,
|
||||
}
|
||||
|
||||
|
||||
class SPTokenizer:
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
max_blank_length=80,
|
||||
byte_fallback=True,
|
||||
):
|
||||
assert vocab_file is not None
|
||||
self.vocab_file = vocab_file
|
||||
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
||||
self.max_blank_length = max_blank_length
|
||||
self.byte_fallback = byte_fallback
|
||||
self.text_tokenizer = self._build_text_tokenizer(encode_special_tokens=False)
|
||||
self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True)
|
||||
|
||||
@staticmethod
|
||||
def _configure_tokenizer(
|
||||
text_tokenizer: TextTokenizer,
|
||||
special_tokens: List[str],
|
||||
max_blank_length: int,
|
||||
byte_fallback: bool,
|
||||
encode_special_tokens=False,
|
||||
):
|
||||
# special token
|
||||
special_token_type = 4 if encode_special_tokens else 3 # 3 - CONTROL, 4 - USER_DEFINE
|
||||
for token in special_tokens:
|
||||
text_tokenizer.proto.pieces.append(
|
||||
sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type)
|
||||
)
|
||||
# whitespaces
|
||||
for token in [SPTokenizer.get_tab_token()] + [
|
||||
SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1)
|
||||
]:
|
||||
text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4))
|
||||
# byte fallback
|
||||
if byte_fallback:
|
||||
text_tokenizer.proto.trainer_spec.byte_fallback = True
|
||||
for i in range(256):
|
||||
text_tokenizer.proto.pieces.append(
|
||||
sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6)
|
||||
)
|
||||
text_tokenizer.refresh()
|
||||
|
||||
def _build_text_tokenizer(self, encode_special_tokens=False):
|
||||
tokenizer = TextTokenizer(self.vocab_file)
|
||||
self._configure_tokenizer(
|
||||
tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens
|
||||
)
|
||||
return tokenizer
|
||||
|
||||
def _get_text_tokenizer(self, encode_special_tokens=False):
|
||||
if encode_special_tokens:
|
||||
return self.special_text_tokenizer
|
||||
else:
|
||||
return self.text_tokenizer
|
||||
|
||||
@staticmethod
|
||||
def get_blank_token(length: int):
|
||||
assert length >= 2
|
||||
return f"<|blank_{length}|>"
|
||||
|
||||
@staticmethod
|
||||
def get_tab_token():
|
||||
return f"<|tab|>"
|
||||
|
||||
@property
|
||||
def num_image_tokens(self):
|
||||
return 20000
|
||||
|
||||
@property
|
||||
def num_text_tokens(self):
|
||||
return self.text_tokenizer.num_tokens
|
||||
|
||||
@property
|
||||
def num_tokens(self):
|
||||
return self.num_image_tokens + self.num_text_tokens
|
||||
|
||||
@staticmethod
|
||||
def _encode_whitespaces(text: str, max_len: int = 80):
|
||||
text = text.replace("\t", SPTokenizer.get_tab_token())
|
||||
for i in range(max_len, 1, -1):
|
||||
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
||||
return text
|
||||
|
||||
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
||||
if linebreak:
|
||||
text = text.replace("\n", "<n>")
|
||||
if whitespaces:
|
||||
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
||||
return text
|
||||
|
||||
def encode(
|
||||
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
|
||||
) -> List[int]:
|
||||
"""
|
||||
@param text: Text to encode.
|
||||
@param linebreak: Whether to encode newline (\n) in text.
|
||||
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
||||
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
||||
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
||||
"""
|
||||
text = self._preprocess(text, linebreak, whitespaces)
|
||||
if not add_dummy_prefix:
|
||||
text = "<n>" + text
|
||||
tmp = self._get_text_tokenizer(encode_special_tokens=special_tokens).encode(text)
|
||||
tokens = [x + self.num_image_tokens for x in tmp]
|
||||
return tokens if add_dummy_prefix else tokens[2:]
|
||||
|
||||
def decode(self, text_ids: List[int], special_tokens=False) -> str:
|
||||
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
||||
text = self._get_text_tokenizer(encode_special_tokens=special_tokens).decode(ids)
|
||||
text = text.replace("<n>", "\n")
|
||||
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
||||
for i in range(2, self.max_blank_length + 1):
|
||||
text = text.replace(self.get_blank_token(i), " " * i)
|
||||
return text
|
||||
|
||||
def tokenize(
|
||||
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
|
||||
) -> List[str]:
|
||||
"""
|
||||
@param text: Text to encode.
|
||||
@param linebreak: Whether to encode newline (\n) in text.
|
||||
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
||||
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
||||
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
||||
"""
|
||||
text = self._preprocess(text, linebreak, whitespaces)
|
||||
if not add_dummy_prefix:
|
||||
text = "<n>" + text
|
||||
tokens = self._get_text_tokenizer(encode_special_tokens=special_tokens).tokenize(text)
|
||||
return tokens if add_dummy_prefix else tokens[2:]
|
||||
|
||||
def __getitem__(self, x: Union[int, str]):
|
||||
if isinstance(x, int):
|
||||
if x < self.num_image_tokens:
|
||||
return "<image_{}>".format(x)
|
||||
else:
|
||||
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
||||
elif isinstance(x, str):
|
||||
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
||||
return int(x[7:-1])
|
||||
else:
|
||||
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
||||
else:
|
||||
raise ValueError("The key should be str or int.")
|
||||
|
||||
|
||||
class ChatGLMTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||||
|
||||
Args:
|
||||
vocab_file (`str`):
|
||||
Path to the vocabulary file.
|
||||
"""
|
||||
|
||||
vocab_files_names = {"vocab_file": "ice_text.model"}
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
model_input_names = ["input_ids"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
do_lower_case=False,
|
||||
remove_space=False,
|
||||
bos_token='sop',
|
||||
eos_token='eos',
|
||||
eop_token='eop',
|
||||
mask_token='[MASK]',
|
||||
gmask_token='[gMASK]',
|
||||
padding_side="left",
|
||||
**kwargs
|
||||
) -> None:
|
||||
super().__init__(
|
||||
do_lower_case=do_lower_case,
|
||||
remove_space=remove_space,
|
||||
padding_side=padding_side,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
self.do_lower_case = do_lower_case
|
||||
self.remove_space = remove_space
|
||||
self.vocab_file = vocab_file
|
||||
|
||||
self.bos_token = bos_token
|
||||
self.eos_token = eos_token
|
||||
self.eop_token = eop_token
|
||||
self.mask_token = mask_token
|
||||
self.gMASK_token = gmask_token
|
||||
|
||||
self.sp_tokenizer = SPTokenizer(vocab_file)
|
||||
|
||||
""" Initialisation """
|
||||
|
||||
@property
|
||||
def eop_token_id(self) -> Optional[int]:
|
||||
"""
|
||||
`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been
|
||||
set.
|
||||
"""
|
||||
if self.eop_token is None:
|
||||
return None
|
||||
return self.convert_tokens_to_ids(self.eop_token)
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
""" Returns vocab size """
|
||||
return self.sp_tokenizer.num_tokens
|
||||
|
||||
def get_vocab(self):
|
||||
""" Returns vocab as a dict """
|
||||
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
||||
vocab.update(self.added_tokens_encoder)
|
||||
return vocab
|
||||
|
||||
def preprocess_text(self, inputs):
|
||||
if self.remove_space:
|
||||
outputs = " ".join(inputs.strip().split())
|
||||
else:
|
||||
outputs = inputs
|
||||
|
||||
if self.do_lower_case:
|
||||
outputs = outputs.lower()
|
||||
|
||||
return outputs
|
||||
|
||||
def _tokenize(self, text, **kwargs):
|
||||
""" Returns a tokenized string. """
|
||||
text = self.preprocess_text(text)
|
||||
|
||||
seq = self.sp_tokenizer.tokenize(text)
|
||||
|
||||
return seq
|
||||
|
||||
def decode(
|
||||
self,
|
||||
token_ids: Union[List[int], List[List[int]]],
|
||||
skip_special_tokens: bool = False,
|
||||
clean_up_tokenization_spaces: bool = True,
|
||||
spaces_between_special_tokens: bool = True,
|
||||
**kwargs
|
||||
) -> str:
|
||||
if isinstance(token_ids[0], list):
|
||||
tokens = []
|
||||
for single_token_ids in token_ids:
|
||||
if self.pad_token_id in single_token_ids: # remove pad
|
||||
single_token_ids = list(filter((self.pad_token_id).__ne__, single_token_ids))
|
||||
tokens.append(self.sp_tokenizer.decode(single_token_ids))
|
||||
return (tokens)
|
||||
else:
|
||||
if self.pad_token_id in token_ids: # remove pad
|
||||
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
||||
return self.sp_tokenizer.decode(token_ids)
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
""" Converts a token (str) in an id using the vocab. """
|
||||
return self.sp_tokenizer[token]
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
return self.sp_tokenizer[index]
|
||||
|
||||
def save_vocabulary(self, save_directory, filename_prefix=None):
|
||||
"""
|
||||
Save the vocabulary and special tokens file to a directory.
|
||||
|
||||
Args:
|
||||
save_directory (`str`):
|
||||
The directory in which to save the vocabulary.
|
||||
filename_prefix (`str`, *optional*):
|
||||
An optional prefix to add to the named of the saved files.
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
if os.path.isdir(save_directory):
|
||||
vocab_file = os.path.join(
|
||||
save_directory, self.vocab_files_names["vocab_file"]
|
||||
)
|
||||
else:
|
||||
vocab_file = save_directory
|
||||
|
||||
with open(self.vocab_file, 'rb') as fin:
|
||||
proto_str = fin.read()
|
||||
|
||||
with open(vocab_file, "wb") as writer:
|
||||
writer.write(proto_str)
|
||||
|
||||
return (vocab_file,)
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||||
adding special tokens. A BERT sequence has the following format:
|
||||
|
||||
- single sequence: `[CLS] X [SEP]`
|
||||
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
||||
|
||||
Args:
|
||||
token_ids_0 (`List[int]`):
|
||||
List of IDs to which the special tokens will be added.
|
||||
token_ids_1 (`List[int]`, *optional*):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
||||
"""
|
||||
if token_ids_1 is not None:
|
||||
token_ids_0 += token_ids_1
|
||||
mask_ids = self.sp_tokenizer[self.mask_token]
|
||||
gmask_ids = self.sp_tokenizer[self.gMASK_token]
|
||||
if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0:
|
||||
token_ids_0 += [gmask_ids]
|
||||
|
||||
if token_ids_0[-1] != mask_ids and token_ids_0[-1] != gmask_ids:
|
||||
token_ids_0 += [self.sp_tokenizer[self.eos_token]]
|
||||
|
||||
token_ids_0 += [self.sp_tokenizer[self.bos_token]]
|
||||
|
||||
return token_ids_0
|
||||
在新工单中引用
屏蔽一个用户