fix: fix checkpoint >6G problem

这个提交包含在:
sharpbai
2023-06-11 09:41:40 +08:00
父节点 ee806b7243
当前提交 898ae79dd6

查看文件

@@ -25,6 +25,9 @@ from transformers import LlamaForCausalLM, LlamaTokenizer
from utils.prompter import Prompter
from transformers import Seq2SeqTrainer, TrainerCallback, TrainingArguments, TrainerState, TrainerControl
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
def train(
# model/data params
@@ -223,6 +226,21 @@ def train(
model.is_parallelizable = True
model.model_parallel = True
class SavePeftModelCallback(TrainerCallback):
def on_save(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
kwargs["model"].save_pretrained(checkpoint_folder)
pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin")
if os.path.exists(pytorch_model_path):
os.remove(pytorch_model_path)
return control
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
@@ -251,6 +269,7 @@ def train(
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
callbacks=[SavePeftModelCallback],
)
model.config.use_cache = False