init code

这个提交包含在:
thinksoso
2023-04-01 17:37:49 +08:00
父节点 bc611611d8
当前提交 1ab34f7075
共有 24 个文件被更改,包括 9631 次插入4 次删除

124
infer.py 普通文件
查看文件

@@ -0,0 +1,124 @@
import sys
import json
import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from utils.prompter import Prompter
if torch.cuda.is_available():
device = "cuda"
def load_instruction(instruct_dir):
input_data = []
with open(instruct_dir, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
d = json.loads(line)
input_data.append(d)
return input_data
def main(
load_8bit: bool = False,
base_model: str = "",
# the infer data, if not exists, infer the default instructions in code
instruct_dir: str = "",
use_lora: bool = True,
lora_weights: str = "tloen/alpaca-lora-7b",
# The prompt template to use, will default to alpaca.
prompt_template: str = "med_template",
):
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
if use_lora:
print(f"using lora {lora_weights}")
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=256,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return prompter.get_response(output)
def infer_from_json(instruct_dir):
input_data = load_instruction(instruct_dir)
for d in input_data:
instruction = d["instruction"]
output = d["output"]
print("###infering###")
model_output = evaluate(instruction)
print("###instruction###")
print(instruction)
print("###golden output###")
print(output)
print("###model output###")
print(model_output)
if instruct_dir != "":
infer_from_json(instruct_dir)
else:
for instruction in [
"一位50岁女性出现不适、厌油腻、肝囊肿等症状,检查后发现为胆囊癌,并且病情十分严重,应该如何进行治疗?",
"一个患有肝衰竭综合征的病人,除了常见的临床表现外,还有哪些特殊的体征?",
"急性阑尾炎和缺血性心脏病的多发群体有何不同?",
]:
print("Instruction:", instruction)
print("Response:", evaluate(instruction))
print()
if __name__ == "__main__":
fire.Fire(main)