镜像自地址
https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese.git
已同步 2025-12-06 06:26:48 +00:00
init code
这个提交包含在:
124
infer.py
普通文件
124
infer.py
普通文件
@@ -0,0 +1,124 @@
|
||||
import sys
|
||||
import json
|
||||
|
||||
import fire
|
||||
import gradio as gr
|
||||
import torch
|
||||
import transformers
|
||||
from peft import PeftModel
|
||||
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
from utils.prompter import Prompter
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
|
||||
def load_instruction(instruct_dir):
|
||||
input_data = []
|
||||
with open(instruct_dir, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
d = json.loads(line)
|
||||
input_data.append(d)
|
||||
return input_data
|
||||
|
||||
|
||||
def main(
|
||||
load_8bit: bool = False,
|
||||
base_model: str = "",
|
||||
# the infer data, if not exists, infer the default instructions in code
|
||||
instruct_dir: str = "",
|
||||
use_lora: bool = True,
|
||||
lora_weights: str = "tloen/alpaca-lora-7b",
|
||||
# The prompt template to use, will default to alpaca.
|
||||
prompt_template: str = "med_template",
|
||||
):
|
||||
prompter = Prompter(prompt_template)
|
||||
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
||||
model = LlamaForCausalLM.from_pretrained(
|
||||
base_model,
|
||||
load_in_8bit=load_8bit,
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
if use_lora:
|
||||
print(f"using lora {lora_weights}")
|
||||
model = PeftModel.from_pretrained(
|
||||
model,
|
||||
lora_weights,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
# unwind broken decapoda-research config
|
||||
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
|
||||
model.config.bos_token_id = 1
|
||||
model.config.eos_token_id = 2
|
||||
if not load_8bit:
|
||||
model.half() # seems to fix bugs for some users.
|
||||
|
||||
model.eval()
|
||||
|
||||
if torch.__version__ >= "2" and sys.platform != "win32":
|
||||
model = torch.compile(model)
|
||||
|
||||
def evaluate(
|
||||
instruction,
|
||||
input=None,
|
||||
temperature=0.1,
|
||||
top_p=0.75,
|
||||
top_k=40,
|
||||
num_beams=4,
|
||||
max_new_tokens=256,
|
||||
**kwargs,
|
||||
):
|
||||
prompt = prompter.generate_prompt(instruction, input)
|
||||
inputs = tokenizer(prompt, return_tensors="pt")
|
||||
input_ids = inputs["input_ids"].to(device)
|
||||
generation_config = GenerationConfig(
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
num_beams=num_beams,
|
||||
**kwargs,
|
||||
)
|
||||
with torch.no_grad():
|
||||
generation_output = model.generate(
|
||||
input_ids=input_ids,
|
||||
generation_config=generation_config,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
max_new_tokens=max_new_tokens,
|
||||
)
|
||||
s = generation_output.sequences[0]
|
||||
output = tokenizer.decode(s)
|
||||
return prompter.get_response(output)
|
||||
|
||||
def infer_from_json(instruct_dir):
|
||||
input_data = load_instruction(instruct_dir)
|
||||
for d in input_data:
|
||||
instruction = d["instruction"]
|
||||
output = d["output"]
|
||||
print("###infering###")
|
||||
model_output = evaluate(instruction)
|
||||
print("###instruction###")
|
||||
print(instruction)
|
||||
print("###golden output###")
|
||||
print(output)
|
||||
print("###model output###")
|
||||
print(model_output)
|
||||
|
||||
if instruct_dir != "":
|
||||
infer_from_json(instruct_dir)
|
||||
else:
|
||||
for instruction in [
|
||||
"一位50岁女性出现不适、厌油腻、肝囊肿等症状,检查后发现为胆囊癌,并且病情十分严重,应该如何进行治疗?",
|
||||
"一个患有肝衰竭综合征的病人,除了常见的临床表现外,还有哪些特殊的体征?",
|
||||
"急性阑尾炎和缺血性心脏病的多发群体有何不同?",
|
||||
]:
|
||||
print("Instruction:", instruction)
|
||||
print("Response:", evaluate(instruction))
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
||||
在新工单中引用
屏蔽一个用户