镜像自地址
https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese.git
已同步 2025-12-06 06:26:48 +00:00
init code
这个提交包含在:
57
export_hf_checkpoint.py
普通文件
57
export_hf_checkpoint.py
普通文件
@@ -0,0 +1,57 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
from peft import PeftModel
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402
|
||||
|
||||
BASE_MODEL = os.environ.get("BASE_MODEL", None)
|
||||
assert (
|
||||
BASE_MODEL
|
||||
), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=decapoda-research/llama-7b-hf`" # noqa: E501
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
||||
|
||||
base_model = LlamaForCausalLM.from_pretrained(
|
||||
BASE_MODEL,
|
||||
load_in_8bit=False,
|
||||
torch_dtype=torch.float16,
|
||||
device_map={"": "cpu"},
|
||||
)
|
||||
|
||||
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
|
||||
first_weight_old = first_weight.clone()
|
||||
|
||||
lora_model = PeftModel.from_pretrained(
|
||||
base_model,
|
||||
"tloen/alpaca-lora-7b",
|
||||
device_map={"": "cpu"},
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
lora_weight = lora_model.base_model.model.model.layers[
|
||||
0
|
||||
].self_attn.q_proj.weight
|
||||
|
||||
assert torch.allclose(first_weight_old, first_weight)
|
||||
|
||||
# merge weights
|
||||
for layer in lora_model.base_model.model.model.layers:
|
||||
layer.self_attn.q_proj.merge_weights = True
|
||||
layer.self_attn.v_proj.merge_weights = True
|
||||
|
||||
lora_model.train(False)
|
||||
|
||||
# did we do anything?
|
||||
assert not torch.allclose(first_weight_old, first_weight)
|
||||
|
||||
lora_model_sd = lora_model.state_dict()
|
||||
deloreanized_sd = {
|
||||
k.replace("base_model.model.", ""): v
|
||||
for k, v in lora_model_sd.items()
|
||||
if "lora" not in k
|
||||
}
|
||||
|
||||
LlamaForCausalLM.save_pretrained(
|
||||
base_model, "./hf_ckpt", state_dict=deloreanized_sd, max_shard_size="400MB"
|
||||
)
|
||||
在新工单中引用
屏蔽一个用户