镜像自地址
https://github.com/xming521/CTAI.git
已同步 2025-12-06 06:36:49 +00:00
40 行
905 B
Python
40 行
905 B
Python
import os
|
|
import sys
|
|
import cv2
|
|
import torch
|
|
import core.net.unet as net
|
|
import numpy as np
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
torch.set_num_threads(4)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
import os
|
|
|
|
rate = 0.5
|
|
|
|
|
|
def predict(dataset,model):
|
|
|
|
# unet = torch.load('./core/0.5unet.pkl').to(device)
|
|
# torch.save(unet.state_dict(), "model_new.pth")
|
|
|
|
global res, img_y, mask_arrary
|
|
with torch.no_grad():
|
|
x = dataset[0][0].to(device)
|
|
file_name = dataset[1]
|
|
y = model(x)
|
|
img_y = torch.squeeze(y).cpu().numpy()
|
|
img_y[img_y >= rate] = 1
|
|
img_y[img_y < rate] = 0
|
|
img_y = img_y * 255
|
|
cv2.imwrite(f'./tmp/mask/{file_name}_mask.png', img_y,
|
|
(cv2.IMWRITE_PNG_COMPRESSION, 0))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# 写保存模型
|
|
# train()
|
|
predict()
|