文件
CTAI/CTAI_model/net/train.py
2020-02-17 16:19:12 +08:00

122 行
3.8 KiB
Python

import sys
sys.path.append("..")
import torch
from torch.nn import init
from torch.utils.data import DataLoader
from data_set import make
from net import unet
from utils import dice_loss
import matplotlib.pyplot as plt
import numpy as np
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
torch.set_num_threads(1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
res = {'epoch': [], 'loss': [], 'dice': []}
def weights_init(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv3d') != -1:
init.xavier_normal(m.weight.data, 0.0)
init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
init.xavier_normal(m.weight.data, 0.0)
init.constant_(m.bias.data, 0.0)
# 参数
rate = 0.50
learn_rate = 0.001
epochs = 1
# train_dataset_path = '../data/all/d1/'
train_dataset_path = 'E:/projects/python projects/ct_data/'
train_dataset, test_dataset = make.get_d1(train_dataset_path)
unet = unet.Unet(1, 1).to(device).apply(weights_init)
criterion = torch.nn.BCELoss().to(device)
optimizer = torch.optim.Adam(unet.parameters(), learn_rate)
def train():
global res
dataloaders = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0)
for epoch in range(epochs):
dt_size = len(dataloaders.dataset)
epoch_loss, epoch_dice = 0, 0
step = 0
for x, y in dataloaders:
id = x[1:]
step += 1
x = x[0].to(device)
y = y[1].to(device)
print(x.size())
print(y.size())
optimizer.zero_grad()
outputs = unet(x)
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
# dice
# a = outputs.cpu().detach().squeeze(1).numpy()
# a[a >= rate] = 1
# a[a < rate] = 0
# b = y.cpu().detach().numpy()
# dice = dice_loss.dice(a, b)
# epoch_loss += float(loss.item())
# epoch_dice += dice
if step % 100 == 0:
res['epoch'].append((epoch + 1) * step)
res['loss'].append(loss.item())
print("epoch%d step%d/%d train_loss:%0.3f" % (
epoch, step, (dt_size - 1) // dataloaders.batch_size + 1, loss.item()),
end='')
test()
# print("epoch %d loss:%0.3f,dice %f" % (epoch, epoch_loss / step, epoch_dice / step))
plt.plot(res['epoch'], np.squeeze(res['cost']), label='Train cost')
plt.ylabel('cost')
plt.xlabel('epochs')
plt.title("Model: train cost")
plt.legend()
plt.plot(res['epoch'], np.squeeze(res), label='Validation cost', color='#FF9966')
plt.ylabel('loss')
plt.xlabel('epochs')
plt.title("Model:validation loss")
plt.legend()
plt.savefig("examples.jpg")
# torch.save(unet, 'unet.pkl')
# model = torch.load('unet.pkl')
test()
def test():
global res, img_y, mask_arrary
epoch_dice = 0
with torch.no_grad():
dataloaders = DataLoader(test_dataset, batch_size=1, shuffle=True, num_workers=0)
for x, mask in dataloaders:
id = x[1:] # ('1026',), ('10018',)]先病人号后片号
x = x[0].to(device)
y = unet(x)
mask_arrary = mask[1].cpu().squeeze(0).detach().numpy()
img_y = torch.squeeze(y).cpu().numpy()
img_y[img_y >= rate] = 1
img_y[img_y < rate] = 0
img_y = img_y * 255
epoch_dice += dice_loss.dice(img_y, mask_arrary)
# cv.imwrite(f'data/out/{mask[0][0]}-result.png', img_y, (cv.IMWRITE_PNG_COMPRESSION, 0))
print('test dice %f' % (epoch_dice / len(dataloaders)))
res['dice'].append(epoch_dice / len(dataloaders))
if __name__ == '__main__':
train()
test()