文件
CTAI/CTAI_tensorRT/main.py
2023-05-25 16:12:44 +08:00

118 行
4.2 KiB
Python

import cv2
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
from PIL import Image
from CTAI_tensorRT.to_oonx import data_in_one
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
onnx_path = 'unet.onnx'
engine_path = 'model.engine'
shape = (1, 1, 512, 512)
import tensorrt as trt
import onnx
import SimpleITK as sitk
def build():
model = onnx.load("unet.onnx")
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
# Create the TensorRT engine
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(network,
TRT_LOGGER) as parser: # Parse the ONNX model
parser.parse(model.SerializeToString())
config = builder.create_builder_config()
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 25) # 1 MiB
config.set_flag(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS)
config.set_flag(trt.BuilderFlag.SPARSE_WEIGHTS)
config.set_flag(trt.BuilderFlag.FP16)
profile = builder.create_optimization_profile()
profile.set_shape("input", (1, 1, 512, 512), (32, 1, 512, 512), (64, 1, 512, 512))
config.add_optimization_profile(profile)
serialized_engine = builder.build_serialized_network(network, config)
# Save the TensorRT engine to disk
with open("engine.trt", "wb") as f:
f.write(serialized_engine)
# Simple helper data class that's a little nicer to use than a 2-tuple.
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
def get_data(data_path):
image = sitk.ReadImage(data_path)
image_array = sitk.GetArrayFromImage(image)
ROI_mask = np.zeros(shape=image_array.shape)
ROI_mask_mini = np.zeros(shape=(1, 160, 100))
ROI_mask_mini[0] = image_array[0][270:430, 200:300]
ROI_mask_mini = data_in_one(ROI_mask_mini)
ROI_mask[0][270:430, 200:300] = ROI_mask_mini[0]
return ROI_mask
# Allocates all buffers required for an engine, i.e. host/device inputs/outputs.
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
input_data = get_data('20014.dcm')
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
# 申请锁页内存
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
np.copyto(host_mem, input_data.ravel())
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
with open("engine.trt", "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
with engine.create_execution_context() as context:
# 分配输入/输出内存
inputs, outputs, bindings, stream = allocate_buffers(engine)
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# Run inference.
context.execute_async(batch_size=1, bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.
res = [out.host for out in outputs][0]
res = res.reshape(engine.get_binding_shape(1)[1:])
res[res >= 0.5] = 1
res[res < 0.5] = 0
res = res * 255
# cv2.imwrite(f'res.png', res, (cv2.IMWRITE_PNG_COMPRESSION, 0))