upload train code

这个提交包含在:
xming521
2020-02-17 16:17:23 +08:00
父节点 e6f084f765
当前提交 d01af7bdd8
共有 13 个文件被更改,包括 831 次插入0 次删除

0
CTAI_model/cv/__init__.py 普通文件
查看文件

114
CTAI_model/cv/get_ROI-all.py 普通文件
查看文件

@@ -0,0 +1,114 @@
import SimpleITK as sitk
import cv2
import numpy as np
from data_set.make import get_train_files
# 跑train不加第二个train
train_data_path = '../data/train/train/'
# train_data_path = '../data/CT/'
def get_roi(path):
global w
file_name = path.split('/')[-3] + '-' + path.split('/')[-1].replace('.dcm', '')
image = sitk.ReadImage(path)
image = sitk.GetArrayFromImage(image)[0, :, :]
image[image < -300] = 0
image[image > 300] = 0
img_o = image.copy()
ROI = np.zeros(image.shape, np.uint8)
slices = [image]
img = slices[int(len(slices) / 2)].copy()
img = np.uint8(img)
# kernel = np.ones((3, 3), np.uint8)
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
# img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
# img = cv2.dilate(img, kernel, iterations=1)
kernel = np.ones((4, 4), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
# 对图像进行阈值分割
ret, img = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY_INV)
# 提取分割结果中的轮廓,并填充孔洞
im2, contours, x = cv2.findContours(img.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
area = []
for c in contours:
area.append(cv2.contourArea(c))
cparea = area.copy()
area.sort(reverse=True)
ROI_tmp = np.zeros(img.shape, np.uint8)
# for i in range(1, 10):
# # 选择最有可能的一个区域
# ROI_tmp = np.zeros(img.shape, np.uint8)
# max_idx = cparea.index(area[i])
#
# # 强度匹配 因为直接映射到dcm上不用转uint8
# cv2.drawContours(ROI_tmp, contours, max_idx, (255, 255, 255), -1)
#
# index = np.nonzero(ROI_tmp)
# mean = np.mean(img_o[index])
# std = np.std(img_o[index])
# # if mean > 90 or mean < 10 or std > 70 or std < 15:
# # continue
#
# s = pd.Series(img_o[index])
# piandu = s.skew()
# fengdu = s.kurt()
# # if piandu > 1 or fengdu < -5 or fengdu > 20:
# # continue
#
# # 生成矩
# M = cv2.moments(contours[max_idx])
#
# # 面积周长
# perimeter = cv2.arcLength(contours[max_idx], True)
# # if area[i] > 2000 or area[i] < 500 or perimeter > 250 or perimeter < 80:
# # continue
# if area[i] > 2000 or perimeter > 400 :
# continue
#
# # if area[i] > 4000 or area[i] < 500 or perimeter > 400 :
# # continue
# #
# # 椭圆拟合
# # try:
# # (x, y), (MA, ma), angle = cv2.fitEllipse(contours[max_idx])
# # if ma - MA > 25:
# # continue
# # # ellipse.append(ma-MA)
# # except:
# # continue
#
#
# # img_o[]
#
# # 加矩形框
# x, y, w, h = cv2.boundingRect(contours[max_idx])
# ROI = cv2.rectangle(ROI, (x, y), (x + w + 10, y + h + 10), (255, 255, 255), -1)
#
# # 填充
# # cv2.drawContours(ROI, contours, max_idx, (255, 255, 255), -1)
ROI_tmp[270:430, 200:300] = image[270:430, 200:300]
cv2.imshow("Image", image)
cv2.imshow("Image", ROI_tmp)
cv2.waitKey(0)
print(f"{train_data_path}ROI-{file_name}.png")
# cv2.imwrite(f"{train_data_path}ROI-{file_name}.png", ROI, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
def main():
global w
dcm_files, _ = get_train_files(train_data_path, file_type='dcm', all=False)
for i in dcm_files:
get_roi(i)
if __name__ == '__main__':
main()

查看文件

@@ -0,0 +1,68 @@
import SimpleITK as sitk
import cv2
import numpy as np
image = sitk.ReadImage('../data/train/train/10087.dcm')
image = sitk.GetArrayFromImage(image)[0, :, :]
image[image < -300] = 0
image[image > 300] = 0
ROI = np.zeros(image.shape, np.uint8)
# 获取图像中的像素数据
slices = [image]
# 复制Dicom图像中的像素数据
img = slices[int(len(slices) / 2)].copy()
img = np.uint8(img)
kernel = np.ones((4, 4), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
# 对图像进行阈值分割
ret, img = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY_INV)
xxx = img
# 提取分割结果中的轮廓,并填充孔洞
im2, contours, x = cv2.findContours(img.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 需要反色处理一下 现在找的是白色的 应该是黑色的
# mask = np.zeros(img.shape, np.uint8)
# for contour in contours:
# cv2.fillPoly(mask, [contour], 255)
# img[(mask > 0)] = 255
area = []
for c in contours:
area.append(cv2.contourArea(c))
cparea = area.copy()
area.sort(reverse=True)
for i in range(3, 8):
max_idx = cparea.index(area[i])
perimeter = cv2.arcLength(contours[max_idx], True)
if area[i] > 5000 or perimeter > 500:
continue
print('周长', perimeter)
cv2.drawContours(ROI, contours, max_idx, (220, 20, 60), -1)
# max_idx = cparea.index(area[3])
# cv2.drawContours(ROI, contours, max_idx, (220, 20, 60), -1)
# cv2.drawContours(ROI, contours, max_idx, (220, 20, 60), -1)
# 对分割结果进行形态学的开操作
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
# img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
# plt.figure(figsize=(10, 7))
# plt.imshow(img, 'gray')
# plt.title('Mask')
# plt.show()
cv2.imshow("Image", ROI)
cv2.waitKey(0)

查看文件

@@ -0,0 +1,232 @@
import sys
sys.path.append("..")
from data_set.make import get_person_files
import cv2
import numpy as np
import SimpleITK as sitk
import pandas as pd
from numba import jit
import inspect
import csv
np.set_printoptions(suppress=True) # 输出时禁止科学表示法,直接输出小数值
mask_data_path = '../data/all/d2/'
# ID为第一个字段名会会让xlsx报错
# dict用表头
column_all = ['ID', '性别', '年龄', '阴性/阳性', 'area', 'perimeter', 'focus_x', 'focus_y', 'ellipse', 'mean', 'std', 'piandu',
'fengdu',
'small_grads_dominance',
'big_grads_dominance', 'gray_asymmetry', 'grads_asymmetry', 'energy', 'gray_mean', 'grads_mean',
'gray_variance', 'grads_variance', 'corelation', 'gray_entropy', 'grads_entropy', 'entropy', 'inertia',
'differ_moment']
# 实际表头
column_all_c = ['ID', '性别', '年龄', '阴性/阳性', '面积', '周长', '重心x', '重心y', '近圆度', '灰度均值', '灰度方差', '灰度偏度',
'灰度峰态', '小梯度优势', '大梯度优势', '灰度分布不均匀性', '梯度分布不均匀性', '能量', '灰度平均', '梯度平均',
'灰度均方差', '梯度均方差', '相关', '灰度熵', '梯度熵', '混合熵', '惯性', '逆差矩']
features_list = ['area', 'perimeter', 'focus_x', 'focus_y', 'ellipse', 'mean', 'std', 'piandu', 'fengdu',
'small_grads_dominance',
'big_grads_dominance', 'gray_asymmetry', 'grads_asymmetry', 'energy', 'gray_mean', 'grads_mean',
'gray_variance', 'grads_variance', 'corelation', 'gray_entropy', 'grads_entropy', 'entropy', 'inertia',
'differ_moment']
# 最后俩偏度 峰度
# 获取变量的名
def get_variable_name(variable):
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is variable]
def glcm(img_gray, ngrad=16, ngray=16):
'''Gray Level-Gradient Co-occurrence Matrix,取归一化后的灰度值、梯度值分别为16、16'''
# 利用sobel算子分别计算x-y方向上的梯度值
gsx = cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3)
gsy = cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)
height, width = img_gray.shape
grad = (gsx ** 2 + gsy ** 2) ** 0.5 # 计算梯度值
grad = np.asarray(1.0 * grad * (ngrad - 1) / grad.max(), dtype=np.int16)
gray = np.asarray(1.0 * img_gray * (ngray - 1) / img_gray.max(), dtype=np.int16) # 0-255变换为0-15
gray_grad = np.zeros([ngray, ngrad]) # 灰度梯度共生矩阵
for i in range(height):
for j in range(width):
gray_value = gray[i][j]
grad_value = grad[i][j]
gray_grad[gray_value][grad_value] += 1
gray_grad = 1.0 * gray_grad / (height * width) # 归一化灰度梯度矩阵,减少计算量
get_glcm_features(gray_grad)
@jit
def get_gray_feature():
# 灰度特征提取算法
hist = cv2.calcHist([image_ROI_uint8[index]], [0], None, [256], [0, 256])
c_features['mean'].append(np.mean(image_ROI[index]))
c_features['std'].append(np.std(image_ROI[index]))
s = pd.Series(image_ROI[index])
c_features['piandu'].append(s.skew())
c_features['fengdu'].append(s.kurt())
def get_glcm_features(mat):
'''根据灰度梯度共生矩阵计算纹理特征量,包括小梯度优势,大梯度优势,灰度分布不均匀性,梯度分布不均匀性,能量,灰度平均,梯度平均,
灰度方差,梯度方差,相关,灰度熵,梯度熵,混合熵,惯性,逆差矩'''
sum_mat = mat.sum()
small_grads_dominance = big_grads_dominance = gray_asymmetry = grads_asymmetry = energy = gray_mean = grads_mean = 0
gray_variance = grads_variance = corelation = gray_entropy = grads_entropy = entropy = inertia = differ_moment = 0
for i in range(mat.shape[0]):
gray_variance_temp = 0
for j in range(mat.shape[1]):
small_grads_dominance += mat[i][j] / ((j + 1) ** 2)
big_grads_dominance += mat[i][j] * j ** 2
energy += mat[i][j] ** 2
if mat[i].sum() != 0:
gray_entropy -= mat[i][j] * np.log(mat[i].sum())
if mat[:, j].sum() != 0:
grads_entropy -= mat[i][j] * np.log(mat[:, j].sum())
if mat[i][j] != 0:
entropy -= mat[i][j] * np.log(mat[i][j])
inertia += (i - j) ** 2 * np.log(mat[i][j])
differ_moment += mat[i][j] / (1 + (i - j) ** 2)
gray_variance_temp += mat[i][j] ** 0.5
gray_asymmetry += mat[i].sum() ** 2
gray_mean += i * mat[i].sum() ** 2
gray_variance += (i - gray_mean) ** 2 * gray_variance_temp
for j in range(mat.shape[1]):
grads_variance_temp = 0
for i in range(mat.shape[0]):
grads_variance_temp += mat[i][j] ** 0.5
grads_asymmetry += mat[:, j].sum() ** 2
grads_mean += j * mat[:, j].sum() ** 2
grads_variance += (j - grads_mean) ** 2 * grads_variance_temp
small_grads_dominance /= sum_mat
big_grads_dominance /= sum_mat
gray_asymmetry /= sum_mat
grads_asymmetry /= sum_mat
gray_variance = gray_variance ** 0.5
grads_variance = grads_variance ** 0.5
for i in range(mat.shape[0]):
for j in range(mat.shape[1]):
corelation += (i - gray_mean) * (j - grads_mean) * mat[i][j]
glgcm_features = [small_grads_dominance, big_grads_dominance, gray_asymmetry, grads_asymmetry, energy, gray_mean,
grads_mean,
gray_variance, grads_variance, corelation, gray_entropy, grads_entropy, entropy, inertia,
differ_moment]
for i in range(len(glgcm_features)):
t = get_variable_name(glgcm_features[i])[0]
c_features[t].append(np.round(glgcm_features[i], 4))
def get_geometry_feature():
# 形态特征 分割mask获得一些特征
im2, contours, x = cv2.findContours(mask_array.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
tarea = []
tperimeter = []
for c in contours:
# 生成矩
try:
M = cv2.moments(c)
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
c_features['focus_x'].append(cx)
c_features['focus_y'].append(cy)
except:
print('error')
# 椭圆拟合
try:
(x, y), (MA, ma), angle = cv2.fitEllipse(c)
c_features['ellipse'].append((ma - MA))
except:
continue
# 面积周长
tarea.append(cv2.contourArea(c))
tperimeter.append(cv2.arcLength(c, True))
# 将mask里的最大值追加 有黑洞
try:
c_features['area'].append(max(tarea))
c_features['perimeter'].append(round(max(tperimeter), 4))
except:
print('area error')
# 提取肿瘤特征
def get_feature(image, mask):
global w
global image_ROI_uint8, index, image_ROI_mini, image_ROI, mask_array
mask_array = cv2.imread(mask, 0)
image = sitk.ReadImage(image)
image_arrary = sitk.GetArrayFromImage(image)[0, :, :]
# 映射到CT获得特征
image_ROI = np.zeros(shape=image_arrary.shape)
index = np.nonzero(mask_array)
if not index[0].any():
# c_features['no'] = True
return None
image_ROI[index] = image_arrary[index]
image_ROI_uint8 = np.uint8(image_ROI)
# 获得只有肿瘤的图片
x, y, w, h = cv2.boundingRect(mask_array)
image_ROI_mini = np.uint8(image_arrary[y:y + h, x:x + w])
w = image_ROI_mini
get_geometry_feature()
get_gray_feature()
glcm(image_ROI_mini, 15, 15)
return c_features
def main():
global w
# 注意下面文件路径 格式
csv_file = open('../data/all/res.csv', 'w', encoding='gbk', newline='')
writer1 = csv.writer(csv_file)
writer1.writerow(column_all_c)
writer2 = csv.DictWriter(csv_file, column_all)
df = pd.read_csv('../data/all/临床数据.csv', encoding='gbk')
image = get_person_files('../data/all/d2/')
mask = get_person_files('../data/out/')
# image1 mask2
for i in range(len(image)):
person_id = image[i][0]
global c_features
c_features = {}
for k in features_list:
c_features[k] = []
if len(image[i][1]) != len(mask[i][2]):
print('文件有错')
for j in range(len(image[i][1])):
get_feature(image[i][1][j], mask[i][2][j])
for j in c_features:
if j == 'id':
continue
c_features[j] = np.round(np.mean(c_features[j]), 4)
person_info = df[df['ID'].isin([person_id])].to_dict('index').values()
person_info = list(person_info)[0]
person_info.update(c_features)
writer2.writerow(person_info)
print(person_info)
csv_file.close()
if __name__ == '__main__':
main()

查看文件

53
CTAI_model/net/test.py 普通文件
查看文件

@@ -0,0 +1,53 @@
import os
import sys
import cv2
sys.path.append("..")
import torch
from torch.utils.data import DataLoader
from data_set import make
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
torch.set_num_threads(4)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
res = {'epoch': [], 'loss': [], 'dice': []}
test_data_path = '../data/all/d2/'
rate = 0.5
test_dataset = make.get_d1_local(test_data_path)
import os
def mkdir(path):
folder = os.path.exists(path)
if not folder: # 判断是否存在文件夹如果不存在则创建为文件夹
os.makedirs(path) # makedirs 创建文件时如果路径不存在会创建这个路径
def onlytest():
unet = torch.load('../result/0.5unet.pkl').to(device)
global res, img_y, mask_arrary
epoch_dice = 0
with torch.no_grad():
dataloaders = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0)
for x in dataloaders:
id = x[1:] # ('1026',), ('10018',)]先病人号后片号
print(id, 'id')
x = x[0].to(device)
y = unet(x)
img_y = torch.squeeze(y).cpu().numpy()
img_y[img_y >= rate] = 1
img_y[img_y < rate] = 0
img_y = img_y * 255
mkdir(f'../data/out/{id[0][0]}/arterial phase/')
cv2.imwrite(f'../data/out/{id[0][0]}/arterial phase/{id[1][0]}_mask.png', img_y,
(cv2.IMWRITE_PNG_COMPRESSION, 0))
if __name__ == '__main__':
# train()
onlytest()

121
CTAI_model/net/train.py 普通文件
查看文件

@@ -0,0 +1,121 @@
import sys
sys.path.append("..")
import torch
from torch.nn import init
from torch.utils.data import DataLoader
from data_set import make
from net import unet
from utils import dice_loss
import matplotlib.pyplot as plt
import numpy as np
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
torch.set_num_threads(1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
res = {'epoch': [], 'loss': [], 'dice': []}
def weights_init(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv3d') != -1:
init.xavier_normal(m.weight.data, 0.0)
init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
init.xavier_normal(m.weight.data, 0.0)
init.constant_(m.bias.data, 0.0)
# 参数
rate = 0.50
learn_rate = 0.001
epochs = 1
# train_dataset_path = '../data/all/d1/'
train_dataset_path = 'E:/projects/python projects/ct_data/'
train_dataset, test_dataset = make.get_d1(train_dataset_path)
unet = unet.Unet(1, 1).to(device).apply(weights_init)
criterion = torch.nn.BCELoss().to(device)
optimizer = torch.optim.Adam(unet.parameters(), learn_rate)
def train():
global res
dataloaders = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0)
for epoch in range(epochs):
dt_size = len(dataloaders.dataset)
epoch_loss, epoch_dice = 0, 0
step = 0
for x, y in dataloaders:
id = x[1:]
step += 1
x = x[0].to(device)
y = y[1].to(device)
print(x.size())
print(y.size())
optimizer.zero_grad()
outputs = unet(x)
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
# dice
# a = outputs.cpu().detach().squeeze(1).numpy()
# a[a >= rate] = 1
# a[a < rate] = 0
# b = y.cpu().detach().numpy()
# dice = dice_loss.dice(a, b)
# epoch_loss += float(loss.item())
# epoch_dice += dice
if step % 100 == 0:
res['epoch'].append((epoch + 1) * step)
res['loss'].append(loss.item())
print("epoch%d step%d/%d train_loss:%0.3f" % (
epoch, step, (dt_size - 1) // dataloaders.batch_size + 1, loss.item()),
end='')
test()
# print("epoch %d loss:%0.3f,dice %f" % (epoch, epoch_loss / step, epoch_dice / step))
plt.plot(res['epoch'], np.squeeze(res['cost']), label='Train cost')
plt.ylabel('cost')
plt.xlabel('epochs')
plt.title("Model: train cost")
plt.legend()
plt.plot(res['epoch'], np.squeeze(res), label='Validation cost', color='#FF9966')
plt.ylabel('loss')
plt.xlabel('epochs')
plt.title("Model:validation loss")
plt.legend()
plt.savefig("examples.jpg")
# torch.save(unet, 'unet.pkl')
# model = torch.load('unet.pkl')
test()
def test():
global res, img_y, mask_arrary
epoch_dice = 0
with torch.no_grad():
dataloaders = DataLoader(test_dataset, batch_size=1, shuffle=True, num_workers=0)
for x, mask in dataloaders:
id = x[1:] # ('1026',), ('10018',)]先病人号后片号
x = x[0].to(device)
y = unet(x)
mask_arrary = mask[1].cpu().squeeze(0).detach().numpy()
img_y = torch.squeeze(y).cpu().numpy()
img_y[img_y >= rate] = 1
img_y[img_y < rate] = 0
img_y = img_y * 255
epoch_dice += dice_loss.dice(img_y, mask_arrary)
# cv.imwrite(f'data/out/{mask[0][0]}-result.png', img_y, (cv.IMWRITE_PNG_COMPRESSION, 0))
print('test dice %f' % (epoch_dice / len(dataloaders)))
res['dice'].append(epoch_dice / len(dataloaders))
if __name__ == '__main__':
train()
test()

68
CTAI_model/net/unet.py 普通文件
查看文件

@@ -0,0 +1,68 @@
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_ch, out_ch):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch), # 归一
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, input):
return self.conv(input)
class Unet(nn.Module):
def __init__(self, in_ch, out_ch):
super(Unet, self).__init__()
self.conv1 = DoubleConv(in_ch, 64)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(2)
self.conv3 = DoubleConv(128, 256)
self.pool3 = nn.MaxPool2d(2)
self.conv4 = DoubleConv(256, 512)
self.pool4 = nn.MaxPool2d(2)
self.conv5 = DoubleConv(512, 1024)
self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.conv6 = DoubleConv(1024, 512)
self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv7 = DoubleConv(512, 256)
self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv8 = DoubleConv(256, 128)
self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv9 = DoubleConv(128, 64)
self.conv10 = nn.Conv2d(64, out_ch, 1)
def forward(self, x):
c1 = self.conv1(x)
p1 = self.pool1(c1)
c2 = self.conv2(p1)
p2 = self.pool2(c2)
c3 = self.conv3(p2)
p3 = self.pool3(c3)
c4 = self.conv4(p3)
p4 = self.pool4(c4)
c5 = self.conv5(p4)
up_6 = self.up6(c5)
merge6 = torch.cat([up_6, c4], dim=1)
c6 = self.conv6(merge6)
up_7 = self.up7(c6)
merge7 = torch.cat([up_7, c3], dim=1)
c7 = self.conv7(merge7)
up_8 = self.up8(c7)
merge8 = torch.cat([up_8, c2], dim=1)
c8 = self.conv8(merge8)
up_9 = self.up9(c8)
merge9 = torch.cat([up_9, c1], dim=1)
c9 = self.conv9(merge9)
c10 = self.conv10(c9)
out = nn.Sigmoid()(c10)
return out

13
CTAI_model/requirements.txt 普通文件
查看文件

@@ -0,0 +1,13 @@
Flask==1.1.1
Werkzeug==0.15.2
pandas==0.23.4
numpy==1.15.0
Pillow==6.1.0
SimpleITK==1.2.2
matplotlib==3.1.1
numba==0.45.1
pydicom==1.3.0
torch==1.2.0
torchvision==0.4.0
opencv-python==3.4.5.20

查看文件

@@ -0,0 +1,38 @@
import numpy as np
def dice(im1, im2):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
# 俩都为全黑
if not (im1.any() or im2.any()):
return 1.0
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
res = 2. * intersection.sum() / (im1.sum() + im2.sum())
return np.round(res, 5)

36
CTAI_model/utils/draw.py 普通文件
查看文件

@@ -0,0 +1,36 @@
import matplotlib.pyplot as plt
import numpy as np
data = []
data_true = []
with open('../result/0.50nohup50.txt', 'r') as f:
data = [i.replace('\n', '') for i in f.readlines()]
for i in range(len(data)):
if i % 3 == 0:
x = data[i].split(' ')
data_true.append([x[2].replace('test', '').replace('train_loss:', ''), x[-1]])
print(data_true)
ax = plt.gca()
plt.rcParams['savefig.dpi'] = 300 # 图片像素
plt.rcParams['figure.dpi'] = 200 # 分辨率
# plt.plot(range(1,51), np.squeeze([i[0] for i in data_true]), label='Train loss')
# plt.ylabel('loss')
# plt.xlabel('epochs')
# plt.title("Model: train loss")
# plt.legend()
# plt.show()
ax.invert_yaxis()
plt.plot(range(1, 51), np.squeeze([i[0] for i in data_true]), label='Train loss')
plt.ylabel('loss')
plt.xlabel('epochs')
plt.title("Model: train loss")
plt.legend()
# plt.show()
plt.savefig('plot123_2.png', dpi=200) # 指定分辨率保存

查看文件

@@ -0,0 +1,44 @@
import os
import SimpleITK as sitk
import cv2
import numpy as np
from data_set import make
def mkdir(path):
folder = os.path.exists(path)
if not folder: # 判断是否存在文件夹如果不存在则创建为文件夹
os.makedirs(path) # makedirs 创建文件时如果路径不存在会创建这个路径
filename_list = make.get_person_files('../data/all/d2/')
for i in filename_list:
pid = i[0]
print(pid)
for j in i[1]:
image = sitk.ReadImage(j)
image_array = sitk.GetArrayFromImage(image).swapaxes(0, 2)
image_array = np.rot90(image_array, -1)
image_array = np.fliplr(image_array).squeeze()
# ret, image_array = cv2.threshold(image_array, 150, 255, cv2.THRESH_BINARY)
mkdir(f'../data/png/{pid}/')
name = j.replace('.dcm', '').split('/')[-1]
# cv2.imwrite(f'../data/jpg/{pid}/{name}.jpg', image_array, [int(cv2.IMWRITE_JPEG_QUALITY), 100])
cv2.imwrite(f'../data/png/{pid}/{name}.png', image_array, (cv2.IMWRITE_PNG_COMPRESSION, 0))
# print(filename_list)
# for i in filename_list:
# if '.dcm' in i:
# image = sitk.ReadImage(data_path + '/' + i)
# image_array = sitk.GetArrayFromImage(image).swapaxes(0, 2)
# image_array = np.rot90(image_rray, -1)
# image_array = np.fliplr(image_array)
# name = i.replace('.dcm', '')
# cv2.imwrite(f'{data_path}/{name}_train.png', image_array, (cv2.IMWRITE_PNG_COMPRESSION, 0))
# t=cv2.imread('data/out/mask-tttt.png',cv2.IMREAD_GRAYSCALE)
# print(t)

查看文件

@@ -0,0 +1,44 @@
import os
def get_train_files(data_path, file_type='dcm', all=True):
file_type = '.' + file_type
image_list, mask_list, ROI_list = [], [], []
dir_list = [data_path + i for i in os.listdir(data_path)]
filename_list = []
for dir in dir_list:
# 所有数据跑
if all:
temp = os.listdir(dir + '/arterial phase')
filename_list.extend([dir + '/arterial phase/' + name for name in temp])
if not all:
filename_list.append(dir)
# temp = os.listdir(dir)
# filename_list.extend([dir + '/' + name for name in temp])
for i in filename_list:
if file_type in i:
image_list.append(i)
if '_mask' in i:
mask_list.append(i)
# 校验文件正确
return image_list, mask_list
if __name__ == '__main__':
a, _ = get_train_files('../data/all/d2/')
_, b = get_train_files('../data/out/')
for i in range(len(a)):
aa = a[i].split('/')[-1].replace('.dcm', '')
bb = b[i].split('/')[-1].replace('_mask.png', '')
if aa != bb:
print(aa, bb, b[i])
print(a[i] + 'file list error!')
for i in range(len(b)):
aa = a[i].split('/')[-1].replace('.dcm', '')
bb = b[i].split('/')[-1].replace('_mask.png', '')
if aa != bb:
print(a[i] + 'file list error!')