upload train code

这个提交包含在:
xming521
2020-02-17 16:17:23 +08:00
父节点 e6f084f765
当前提交 d01af7bdd8
共有 13 个文件被更改,包括 831 次插入0 次删除

查看文件

53
CTAI_model/net/test.py 普通文件
查看文件

@@ -0,0 +1,53 @@
import os
import sys
import cv2
sys.path.append("..")
import torch
from torch.utils.data import DataLoader
from data_set import make
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
torch.set_num_threads(4)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
res = {'epoch': [], 'loss': [], 'dice': []}
test_data_path = '../data/all/d2/'
rate = 0.5
test_dataset = make.get_d1_local(test_data_path)
import os
def mkdir(path):
folder = os.path.exists(path)
if not folder: # 判断是否存在文件夹如果不存在则创建为文件夹
os.makedirs(path) # makedirs 创建文件时如果路径不存在会创建这个路径
def onlytest():
unet = torch.load('../result/0.5unet.pkl').to(device)
global res, img_y, mask_arrary
epoch_dice = 0
with torch.no_grad():
dataloaders = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0)
for x in dataloaders:
id = x[1:] # ('1026',), ('10018',)]先病人号后片号
print(id, 'id')
x = x[0].to(device)
y = unet(x)
img_y = torch.squeeze(y).cpu().numpy()
img_y[img_y >= rate] = 1
img_y[img_y < rate] = 0
img_y = img_y * 255
mkdir(f'../data/out/{id[0][0]}/arterial phase/')
cv2.imwrite(f'../data/out/{id[0][0]}/arterial phase/{id[1][0]}_mask.png', img_y,
(cv2.IMWRITE_PNG_COMPRESSION, 0))
if __name__ == '__main__':
# train()
onlytest()

121
CTAI_model/net/train.py 普通文件
查看文件

@@ -0,0 +1,121 @@
import sys
sys.path.append("..")
import torch
from torch.nn import init
from torch.utils.data import DataLoader
from data_set import make
from net import unet
from utils import dice_loss
import matplotlib.pyplot as plt
import numpy as np
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
torch.set_num_threads(1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
res = {'epoch': [], 'loss': [], 'dice': []}
def weights_init(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv3d') != -1:
init.xavier_normal(m.weight.data, 0.0)
init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
init.xavier_normal(m.weight.data, 0.0)
init.constant_(m.bias.data, 0.0)
# 参数
rate = 0.50
learn_rate = 0.001
epochs = 1
# train_dataset_path = '../data/all/d1/'
train_dataset_path = 'E:/projects/python projects/ct_data/'
train_dataset, test_dataset = make.get_d1(train_dataset_path)
unet = unet.Unet(1, 1).to(device).apply(weights_init)
criterion = torch.nn.BCELoss().to(device)
optimizer = torch.optim.Adam(unet.parameters(), learn_rate)
def train():
global res
dataloaders = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0)
for epoch in range(epochs):
dt_size = len(dataloaders.dataset)
epoch_loss, epoch_dice = 0, 0
step = 0
for x, y in dataloaders:
id = x[1:]
step += 1
x = x[0].to(device)
y = y[1].to(device)
print(x.size())
print(y.size())
optimizer.zero_grad()
outputs = unet(x)
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
# dice
# a = outputs.cpu().detach().squeeze(1).numpy()
# a[a >= rate] = 1
# a[a < rate] = 0
# b = y.cpu().detach().numpy()
# dice = dice_loss.dice(a, b)
# epoch_loss += float(loss.item())
# epoch_dice += dice
if step % 100 == 0:
res['epoch'].append((epoch + 1) * step)
res['loss'].append(loss.item())
print("epoch%d step%d/%d train_loss:%0.3f" % (
epoch, step, (dt_size - 1) // dataloaders.batch_size + 1, loss.item()),
end='')
test()
# print("epoch %d loss:%0.3f,dice %f" % (epoch, epoch_loss / step, epoch_dice / step))
plt.plot(res['epoch'], np.squeeze(res['cost']), label='Train cost')
plt.ylabel('cost')
plt.xlabel('epochs')
plt.title("Model: train cost")
plt.legend()
plt.plot(res['epoch'], np.squeeze(res), label='Validation cost', color='#FF9966')
plt.ylabel('loss')
plt.xlabel('epochs')
plt.title("Model:validation loss")
plt.legend()
plt.savefig("examples.jpg")
# torch.save(unet, 'unet.pkl')
# model = torch.load('unet.pkl')
test()
def test():
global res, img_y, mask_arrary
epoch_dice = 0
with torch.no_grad():
dataloaders = DataLoader(test_dataset, batch_size=1, shuffle=True, num_workers=0)
for x, mask in dataloaders:
id = x[1:] # ('1026',), ('10018',)]先病人号后片号
x = x[0].to(device)
y = unet(x)
mask_arrary = mask[1].cpu().squeeze(0).detach().numpy()
img_y = torch.squeeze(y).cpu().numpy()
img_y[img_y >= rate] = 1
img_y[img_y < rate] = 0
img_y = img_y * 255
epoch_dice += dice_loss.dice(img_y, mask_arrary)
# cv.imwrite(f'data/out/{mask[0][0]}-result.png', img_y, (cv.IMWRITE_PNG_COMPRESSION, 0))
print('test dice %f' % (epoch_dice / len(dataloaders)))
res['dice'].append(epoch_dice / len(dataloaders))
if __name__ == '__main__':
train()
test()

68
CTAI_model/net/unet.py 普通文件
查看文件

@@ -0,0 +1,68 @@
import torch
import torch.nn as nn
class DoubleConv(nn.Module):
def __init__(self, in_ch, out_ch):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch), # 归一
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, 3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, input):
return self.conv(input)
class Unet(nn.Module):
def __init__(self, in_ch, out_ch):
super(Unet, self).__init__()
self.conv1 = DoubleConv(in_ch, 64)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = DoubleConv(64, 128)
self.pool2 = nn.MaxPool2d(2)
self.conv3 = DoubleConv(128, 256)
self.pool3 = nn.MaxPool2d(2)
self.conv4 = DoubleConv(256, 512)
self.pool4 = nn.MaxPool2d(2)
self.conv5 = DoubleConv(512, 1024)
self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.conv6 = DoubleConv(1024, 512)
self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv7 = DoubleConv(512, 256)
self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv8 = DoubleConv(256, 128)
self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv9 = DoubleConv(128, 64)
self.conv10 = nn.Conv2d(64, out_ch, 1)
def forward(self, x):
c1 = self.conv1(x)
p1 = self.pool1(c1)
c2 = self.conv2(p1)
p2 = self.pool2(c2)
c3 = self.conv3(p2)
p3 = self.pool3(c3)
c4 = self.conv4(p3)
p4 = self.pool4(c4)
c5 = self.conv5(p4)
up_6 = self.up6(c5)
merge6 = torch.cat([up_6, c4], dim=1)
c6 = self.conv6(merge6)
up_7 = self.up7(c6)
merge7 = torch.cat([up_7, c3], dim=1)
c7 = self.conv7(merge7)
up_8 = self.up8(c7)
merge8 = torch.cat([up_8, c2], dim=1)
c8 = self.conv8(merge8)
up_9 = self.up9(c8)
merge9 = torch.cat([up_9, c1], dim=1)
c9 = self.conv9(merge9)
c10 = self.conv10(c9)
out = nn.Sigmoid()(c10)
return out